

ET ON A CHIP
We review Atari's Extra Terrestrial game

IT HAD TO HAPPEN...

The new HITACHI PF:ACH out-performs any small business/personal system you may now be considering, but only costs $\$ 1495$ plus sales tax if applicable

Includes numeric key pads, ten programmable function keys (5 with shift), clock, speaker, the power of 6809 CPU, (RS232, centronics, light pen, audio, video) connections, six expansion slots for peripherals, 32 k to 96 k RAM, 24k ROM, advanced MICROSOFT BASIC, machine language, complete documentation, main frame TERMINAL capabilities, 640 by 200 dot byte addressable graphics, eight colours, upper/lower case, 40/80 columns and much more.
Monitors, diskette drives, hard disks, CIS-COBOL, PASCAI, FORTRAN, etc. are also available to complement the high standards and unequalled quality of this, the most powerful small computer in the world.

VICTORIA

Radaro Computer Centre 316 Queen St, Melbourne
(03) 676638

HiSoft Pty Ltd,
Kilda
(03) 5340383

Direct Data,
131 High St, Prahran
(03) 5293800,5293198

D4 Data Pty Ltd,
19 Piedmont Crt, Croydon
(03) 7256637

Minerva Microware,
9/43 Kensington Rd, Sth Yarra
(03) 2417094

Family Computing,
5 Camden Crt, Glen Waverley
(03) 5603103

Computers 2000
14 Young St, Frankston
(03) 7814244
E.M.Services

62 Ardrie Rd, East Malvern
(03) 2115018

Peach Computer Products,
1 Botherambo St, Richmond
(03) 4293216

COUNTRY

Computer Checkpoint,
60 Corio St, Shepparton
(058) 218174
C.J.Computer Systems,
R.M.B. 5450, Yambuk
(055) 684386

Season Software
P.O. Box 261, Myrtleford
(057) 972729

Minit Computers,
119 McCrae St, Bendigo
(054) 432589

High-Flight Computer Services,
(052) 432373

Computers for People,
154 Curlewis St, Swan Hill
(050) 322125

Halloran Motors,
191-195 Murray St, Colac
(052) 315222
V.B.A. Business Machines,

78 Hope St, Geelong West
(052) 221347

NEW SOUTH WALES
Computer Cellar,
136 Maitland Rd, Mayfield
(049) 675700
L.S.T. Computers,

11 Fitzroy St, Tamworth
(067) 663162

Hi-Tech,
Myer Centre, David St, Albury
(060) 217881

De Havilland Micro World,
18 Bourbon St, Wyoming
(043) 844299

Micla Computers,
123 Jessie St, Armidale
(067) 725792

Peter Robinson,
174 Osburn Ave, Mac Gregor
(062) 484852

Shoalhaven Business Equipment
25 Maroo St, Bomaderry
(044) 215747

Cybernetics Research,
120 Lawson Rd, Redfern
102) 6993690

Integrated Information Services, 24 Sefton Rd, Thornleigh
(02) 8480800

Ron Barlow \& Associates,
5 Trafalgar Lane, Annandale
(02) 6920432

Wildcat Computer,

2/150 Cronulla St, Cronulla 02) 5233505

Computer House,
155 Miller St, North Sydney
(02) 923345

Mighty Byte,
76 Hilltop Cres, Clauville
(02) 9183230

Lakefield Data,
22 McIntosh Rd, Dee Why (02) 9813960

Creative Strategy,
15 Centennial Ave, Lane Cove
(02) 4275526

Datatype Computer Systems,
30 Fisher Rd, Dee Why
(02) 9812022

Specialty Enterprises,
104 Bathurst St, Sydney
(02) 2677747

Ensoft,
261 Northumberland St,
Liverpool
Computermax,
(02) 6018493

539 Pittwater 'R
S30 pittwater Rd, Brookvale
(02) 931383

QUEENSLAND

Electronic Circuit,
172 Wickham Tce, Fortitude Valley
(07) 528455

The Data Professionals,
172 Edwards St, Brisbane
(07) 2297101

Software 80,
200 Moggill St, Taringa
(07) 3716996

Computer City,
600 OId Cleveland Rd, Camphill
(07) 3986759

Innisfail Hi Fi Centre,
43 Edith St, Innisfail
(070) 612014

Coastal Communications, P.O. Box 49, Miami.

Toowoomba Computer Centre, 88 Mary St, Toowoomba
(076) 327542

Computer Joe,
185 Ingham Rd, Townsville
(077) 723671
R.E.Hunter \& Associates

8 Jones St, Cairns
1070) 515902

Specialty Enterprises Pty Ltd,
246 Queen St, Brisbane
(07) 2292450

SOUTH AUSTRALIA
Micro-80,
433 Morphett St, Adelaide
(08) 2117244

Metropole,
141 Rundie St, Adelaide
(08) 2235538

Key Computer,
1055 South Rd, Edwardstown
(08) 2778936

WESTERN AUSTRALIA

Microbee Computers,
422 Newcastle St, West Perth
(09) 3289308

System Concepts,
159 Onslow Rd, Shenton Park
(09) 3815611

NORTHERN TERRITORY
Darwin Business Machines,
47 Stuart Highway, Darwin
(089) 815288

Territory Business Suppliers,
Hartley St, Alice Springs
(089) 522877

TASMANIA

Dot-Byte Personal Computers,
145 Warwick St, Hobal t
002) 341755

WE MAKE THE CASE FOR YOUR HARDWARE

$340 \times 340 \times 115$ double $51 / 4^{\prime \prime}$ drive cabinet with plenty of room
for power supply.

Double slimline and
double standard $8^{\prime \prime}$ drive cabinet.
$475 \times 500 \times 145$
fixed drive cabinet showing the 20 mil visor look.

Wherever possible all screws have been moved underneath the cabinet and are not seen, giving us our famous "no visible means of support" look, exclusive to Tech frame.
All cabinets have a plug and cord fuse appliance inlet with on/off switch as standard equipment. All cabinets have the appropriate fan mounting hole, and the fan can be supplied if requested. Construction is of 2.5 or 3 mm aluminium, the cover is epoxy painted for durability, and the base is black anodised.
Techframe will also design and manufacture chassis and cabinets in sheet metal and plastic for industry.

TECHFRAME
 DEVELOPMENTS

N.E. Edmonds, 10 Hornsby Street, Hornsby, NSW 2077 Design manager: Jim Beall. (02) 4763328

ADVERTISERS INDEX

	120
Alliance	113
Alpha Digital Research	106
Ampec Electronics	27,54,90
Anderson Digital Equipment	
Archive Computer Services	15
Archives Computers	OBC
Australian Exhibition Services	38,39
ASP Microcomputers.	111
Burroughs	42
BBJ Computer Shop	11
BS Microcomp.	
Calcutronic	07
Case Communications	36
Caulfield Business Computers	107
City Personal Computers.	Opp 1,112
Commodore Computer.	70,71,76
Compak Computer Shop.	
The Computer Company.	,87
Computer Country	
Computer Discounter.	
Computer Edge	,47,110
Computer Imports	
The Computer Shop . . 37,	5,49,99,101
The Computer Spot.	
Computer Wave	
Cosmic Software	20
Creative Engineering	

MIS Computer Systems 116
New Generation Computer Store 56
Osborne 83
Peaci Computer Products 16
PJI
.77
PJ Prentice \& 1 ssociates 16
President Computer. 21,80
QT Computer Systems. Cont
Radaro . 114
Rank Xerox i2i3
Robs Computer Centre. 12,13
Rod Irving Electronics 72,73
Rocksoft. 113
Seahorse Computers 113
Scientific Devices 17
Sigma Data. 50
Software Source. 69
System Software 34
Tandy Electronics. Opp IFC
Technical Book shop 24
Verbatim. IBC
Vic Education 29
Vision 80. $51,53,113$
What Is, What If. 12 C
Wildcat. 106
Wiser Microsoft 115

inside

Cover courtesy of Futuretronics Australia Pty Ltd.

RECULARS

3 printout

What's going on in the micro world - and what isn't.

40 CALCULATOR CORNER

A complex arithmetic program for the Sharp PC1211.

51 COMMUNICATIONS

Your chance to moan, whinge, complain congratulate even!
74 SUBSCRIPTIONS
This month's reason to buy a subscription to $A P C$.
82 NEWCOMERS START HERE
APC's intro to computing.

DIRECT ACCESS
Our new micro "database" incorporating our existing information columns, DIARY DATA, USERS GROUP INDEX and NETWORK NOTES and incorporating our microcomputer tradingpost, MICRO EXCHANGE and our buyer's guide, MICRO MARKET.

101 LAZING AROUND

Another teaser to throw your mental processes into total confusion.

101 BLUDNERS

Every magazine makes mistakes - only APC' is stupid enough to admit them!

109 PROGRAMS

A mixed bag of readers' software.
120 снІр Снат
More malicious jibes, snide asides and spurious innuendos.

FFATUVISSAD SERTITS

18 DATABASE COMPARISON

Kathy Lang compares notes on micro databases.
25 AN INTELLIGENCE TEST FOR COMPUTERS
Bev Mason introduces an interesting calculus program.

57 CLOCK IT TO ME
The conclusion of Bruce Marriott's Apple II clock card design.

77 APC SUBSET

Another collection of useful Assembler routines.
84 ADA - A BRIEF ENCOUNTER
Mike Parr discusses the Ada programning language.
91. WRITING THE SMALL PRINT

Andrew May demonstrates tiny printing on a Centronics 739.

BENCHIIESTS

\& REVIIWS

22 EPSon hx 20

Dick Pountain peeks inside Epson's hand-held computer.
43 E.T. THE GAME
Atari's newest addition to its games repertoire.
4980 COLUMN CARDS COMPARED
Ian Davies checks-out two popular boards for the Apple II.
95 CARDBOX DATABASE BENCHTEST
Kathy Lang Benchtests a unique data storage system.

Editor	Tecinical Editor	Advertising	Printed by	Produced undes
Sean Howard	lan Davies	Gerard Kohne	Lewis Printing	licence from
		(03) 5448855		Felden Productions

Published by Loward Productions,
Published by Roward Productions,
500 Clay ton Road, Clayton, Vic 3168. Telephone (03) 5448855.
Material contained within Australinn Personal Computer is protected by the Conmonwealth Copyripht Act 1968. No material may be seproduced in part or whole without writen consent from the copyright holders.

City Personal Computers wishes all its customers a very Merry Christmas and a Happy New Year, with the greatest range of computers, accessories and software!

AXerox Micro-Computer with software for $\$ 3,780$ should keep everyone happy.

When it comes to Micro-Computers, it has to be described as the bargain of the year.

The incredibly versatile Xerox 820 is priced at $\$ 3,780$. And for a limited period we're throwing in $\$ 1,000$ worth of software absolutely free!

Here's what you get.
The low cost 820 comprises display screen, keyboard and processor with $51 / 4^{\prime \prime}$ 'single sided single density disc. And with it you get a CPM Operating System, Xerox Word Processing and Supercalc. The Xerox Micro-

I' m interested in this fantastic Micro-Computer offer of $\$ 3,780$ which includes a $\$ 1,000$ worth of software absol atcly, free.
Send to: Postree 31, Send to: Postrfer 31,
Rank Xerox Australia) Py. Linited,
P. Box 934, North Sydney NSW 2060 R.O.Box 934 ,North Sydney,NSW 2060 .

Computer with software for $\$ 3,780$ *
(*The 8" Single Sided Single Density System shown above is optional and is available at $\$ 4,665$.)

Ring Rank Xerox right now or return the

The BASIC COMPILER is truly an amazing product! Now for the first time, Sorcerer users can join the many thousands of users who develop programs using a BASIC compiler.

WHAT DOES THE BASIC CDMPILER DD?

The BASIC COMPILER is an assembly language program which translates a BASIC Source program into object code which may then be run at a speed comparable to machine code. At the time of compilation, the compiler converts constants to binary, enters variables into a symbol table, checks the syntax of each statement, resolves line number references and generates object code. When the object code is executed there is no further conversion of constants or searching for variables or line numbers. The object code is fully processed for immediate execution. An interpreter (such as the BASIC ROM PAC) is at a severe speed disadvantage because it must analyse each statement evary time it executes the statement. It must convert constants to binary, search for variables and line numbers and analyse the syntax. Thus an interpreter does the two operations of analysis and execution every time a statement is executed. The BASIC COMPILER carries out the analysis only once (during compilation) and the generated object code may be immediately executed as many times as required or may be stored on cassette or disk for subsequent use.

BASIC COMPILER OVERVIEW

This compler is a direct enhancement of the Sorcerer BASIC ROM PAC language. With the ROM PAC inserted, the user may load, RUN and debug his BASIC program then simply compile his code. The compiled program may be run and tested, then, it an error is found, the user may re-enter BASIC and edit the original source. All this may be done without having to save anything on cassettio or disk!

OOCUMENTATION

The BASIC COMPILER comes with a full set of protessional quality documentation, including:

- Specially made and printed quality ring binder
- Over 55 pages of text
- Full table of contents.
- Full explanation of ali statement and functions including extremely clear description of constants, variables, operators and expression valuation.
- Page headings include chapter, section and subsection number for quick reforence.

SUPPORT

SYSTEM SOFTWARE is one of the leading international developers and suppliers of sottware for the Sorcerer Computer. SYSTEM SOFTWARE is committed to continuing research and development of new and better products for Sorcerer users. Suggestions for new products or enhancements to the BASIC COMPILER are always welcome. The BASIC COMPILER is a reliable, solid product and SYSTEM SOFTWARE is committed to its continuing exellence.

features

- Complete easy to read documentation
- Full sottware support and back-up.
- Extremely compact code and data structure.
- Full boundary and overfiow checking.
- Easy to use.
- Fast program development
- Byte, integer and fioating point variables.
- 3 to 50 times laster than ROM PAC BASIC.
- The worlds least expensive complier
- Disks are not required.
- Simplified programming techniques.
- String cassette Input/Output.
- Special Sorcerer high resolution graphics commanos.
- Compatible with the ROM PAC.
- Advanced string handeling techniques used.

SPEED

The BASIC COMPILER is designed for fast compilation and execution of small or large programs with hundreds of iines and variables.
Programs will typically execute 3 to 20 times faster than ROM PAC BASIC. By optimizing the code the user may obtain speed advantages in excess of 50 times, particularly with long programs.

COMPACTNESS

The BASIC COMPILER highly optimizes the generated object code to reduce lis size to a minimum. Compared with other compilers, the object code is $1 / 2$ to $1 / 3$ the size. Together with optional byte and integer constants and variables (0 c cupying only 1 or 2 bytes of memory each), significant space savings are made and thus ailow the compilation and execution of large programs.

RELIABILITY

Unlike some compilers, the BASIC COMPILER checks that all arrays subscripts are within bounds and checks for integer and real overflow. Hence there is no chance of a program producing erroneous and unpreditcable results if a bounds or overflow error occurs.
OPERATIONAL EASE OF USE
The BASIC COMPILER is easy to use. A tew simple steps are all that is required to edit, debug, compile, execute and save a program. In addition, all this can be done without having to save anything on cassette or disk. There is no complicated linking and loading process. All BASIC COMPILER options are menu driven for user friendliness.

ENHANCED DATA TYPES

The BASIC COMPILER supports bytes, integers, reals and strings. These data types provide programming flexibility, compact code and maximum execution speed.

ENHANCED CASSETTE INPUT/OUTPUT

The BASIC COMPILER allows any type of array to be saved or loaded. Thus byte, integer, real and string arrays may be used in the CLOAD* and CSAVE* statements. The ability to save string arrays opens the opportunity for a whole new range of applications for home, family and business. Text and numeric values (using the new numeric to string conversion BASIC function) can be stored in string arrays, saved and reloaded. Thus, files containing names and addresses together with numeric values can be created, saved, re-read, updated and resaved with maximum efficiency.

gRAPHIC ENHANCEMENT

The BASIC COMPILER includes extra graphics statements (PRINT \& SET and RESET). These facilities, combined with the very fast processing of integers, means that graphics application programs (plots, games, etc.) may be more easily programmed and give much faster screen animation. A $1 / 6$ of a character size dot may be turned on or off anywhere on the screen.

CDMPATABILITY

The BASIC COMPILER language is a super set of ROM PAC BASIC with many useful enhancements and few restrictions (which should not seriously inconvenience any user). Any ROM PAC BASIC program should be able to be processed by the BASIC COMPILER. Because integer and byte variables are specified with REM/BYTE and REM/INTEGER statements, which are ignored by ROM PAC BASIC. these programs may be RUN with either ROM PAC BASIC or the BASIC COMPILER.

advanced string handling

The BASIC COMPILER has advanced string handiing capabillties. The unique mathod of dynamic string allocation provides fuil flexibility and also enables string compaction to be avoided completely. Additional string statements and functions (left hand MID\$. SPC\$. CVI, MKI\$ etc) simplify programming and increase execulion speed.

PRDGRAMMING EASE

Additional teatures of the BASIC COMPILER may be used to simpiify programming. These features include the IF THEN - ELSE statement, graphics commands, cursor control and additional string functions and others.

PRIGE

The BASIC COMPILER is a full compiler with advanced extensions to ROM PAC BASIC and was specifically designed for a wide range of Sorcerer Users. The documentation sets new standards for BASIC language documentation in terms of completeness, logical arrangement and ease of understanding.
The BASIC COMPILER is priced to sell to as wide a market as possible. It is a fraction the cost of any other compiler on the world market today. Considering the development time (in excess of 4000 man hours) and hardware costs we believe that the BASIC COMPILER is unbeatable 'value for money'

HARDWARE REQUIREMENTS

The BASIC COMPILER has been designed to run on an Exidy Sorcerer computer with at least 32 K of RAM.
basic compiler language
Constants:
Byte, Integer. Real, String.
Scalar Variabies:
Integer, Real. String.
Arrays:
Byte, Integer, Real, String.
Operators:
Arithmetic - + * ", , /, =
String Concatenation +
Relational $=,\langle \rangle\langle \rangle,\langle=\rangle=$
Logical NOT, AND, DR, XOR
Specification Statements
REM/OPTION
DIM
REM/BYTE
REM/INTEGER CLEAR REM

Assignment Statements
 LET

FIow Control Statements
GOSUB FOR
IF GOTO
Input/Output Statements
INPUT
THEN
RETURN
STOP
$\begin{array}{llll}\text { Input/Output Statements } & & \\ \text { INPUT } & \text { WAIT } & \text { RESET } & \text { PRINT\& } \\ \begin{array}{lll}\text { RESTORE } & \text { READ } & \text { POKE }\end{array} & \text { CLOAD* } \\ \text { SET } & \text { PRINT } & \text { DATE } & \text { OUT }\end{array}$
SET PRINT
CSAVE*
DATE
CSAVE*
User Routines
NEF
ABS
LOG
Trigonomatric Functions

ATN	TAN	COS	SIN
String Functions			
ASC	CHR\$	CVI	CVS
INSTR	LEFT\$	LEN	MID
MKI\$	MKS\$	RIGHT\$	
SPC		STR\$	VAL

SPC
SPC TAB
input/Output Functions
POS
PEEK

Airmail to
Name:
Company
Address:
City:
Country:
Payment Method
Money Order Cheque
Credit Card
\square Australian Bankcard \square American Express \square Visa \square Diners Club (Please tick one)
Name on credit card
Account number
Expiry date
Authorised signature
Dale
N.B. Orders may be phoned through during office hours if a credit card is being used on (09) 3307336. Phone also during office hours for additional information.

Cost:

Cost of compiler including manual in ring binder file: $\$ 69$
Airmall postage and packaging:

- Within Australia $\$ 3.00$
- Overseas $\$ 8: 00$
W.A., 6157, AUSTRALIA.

APC reports on the latest news from the world micro scene.

The average store

What constitutes your average micro store in Australia today? Certainly three years ago it wasn't terribly impressive, usually had only one or at the most two makes of microcomputer and catered for a dedicated buyer. Since then there has been a trend to flashier stores each carrying a range of micros which has completely turned the tables on the distributor/retailer relationship. Today the retail
store has no "political" difficulty putting one micro next to another on a shop bench as evidenced by Robs Computer Centre which carries the VIC-20, Atari 400 and 800, Hitachi Peach and Success, Kaypro, Columbia and ICL micros. Robs Computer Store even boasts one of Australia's biggest "computers" on its roof.

New database

Infostar is a new data base management system apparently designed for "non-
programmers". It actually consists of two programs, Datastar 1.4 and Reportstar 1.0 .

Datastar 1.4 has additional features over version 1.101 including increased file limit to 8 Mb , new user-friendly training guide, the ability to name individual fields in addition to numbering them, more memory available for data filles by having the ability to define any field as an intermediate field, and not surprisingly the ability to work with Reportstar.

It sells for $\$ 610$ and more
details can be obtained from lmagineering on (02) 3583011.

More than games

V1C Education has been quietly developing software for Commodore's VIC-20 over the last half year. It's aimed at young school children and provides a variety of "lessons" on such subjects as maths and spelling.

Dennis Argall, MD of VIC Iducation, says that the software is extensively "tested" by children in the appropriate age groups to assure that bugs and unsuitable material is com-

THE DICK SMITH SYSTEM 80 GROWS WITH

Expansion Connector, which lets you connect either the low-cost Printer Interlace (X 4013) or the tull Expansion Unit (X-4020). The X-4020 Expansion Unit gives you 16K of sxtra RAM, room for another 16 K again, a disk dive controler and a a printer port.

Looking for a computer that's suitable for the beginner . . . but ideal for the expert? You want the new Dick Smith System 80 Blue Labell
If you know absolutely nothing about computers, the System BO is the ideal way to learn. If you know a little about computers, it's a great way to improve your knowledge. And if you know a lot about computers, you'll find the System 80 will go as far as you want it to - and further.
The System 80 is expandable (with the optional $\mathrm{S}-100$ expansion unit - see opposite page) to accommodate a huge range of options and accessories. You could even run a small business if you wished!
Have a look at the superb new Blue Label System 80 soon. Anything else could be wasting your money!

Check these features:

- Flashing Cursor.
- Built-in speaker and Amplifier for programs with sound effects.
- Full upper and lower case video display capability.
- Screen print facility (obtain a printout of any 'page' appearing on the screen).
- Monitor program (suitable for the hobbyist to program in machine language).
- Access to enormous amounts of software that has been written for the TRS-80.
- Three month guarantee from date of purchase.
- Great expansion capability and flexibility.

16K RAM

 expandable to 48 K , CPU is the powerful Z80 microprocessor that's the System 80... BLUE LABRL provision for a sacond extamal recorder and the console has a leval meter. Powerful 12 K Mierosoth BASIC plus 16 K of user memory (RAM), necessary for most serious programming and for using the huge range of sotwate.

State-of-the-art microprocessor. At the heart of the System 80 is the modern 280 clip, the industry slandard because of its speed and powerful instruction sat.
Full 52 key high tactile response keyboard. On
System 80 you get a full typewrite-style
keyboard with 52 normal keys and two additional function keys.
$\$ 16.24$ per week (to approved applicants)

Cat X-4005

you!

"the best value around for a ready built Computer" - quotation from Electronics (isis 1982 and look at our great range of printers

ECONOMICAL

 MONITOR

A video monitor gives a sharper clearer image - this black G white monitor is really economical and can be used with most computers on the market. Cat X-1196

Why pay

\& LOOK AT the DICK SMITH DOT MATRIX PRINTER

To get the most from your computer, you need to be able to add on all sorts of 'peripherals'; disk drives, printers etc. This unit gives interface ability and also a
further 16 K of memory with further 16 K of memory with room for further 16 K (giving a total of 48 K).

FEATURES :

- 16 K of expansion RAM, room for 16K more.
- A floppy disk controller for controlling up to 4 disk drives giving up to 400 K bytes.
- A Centronics-type parallel printer port.
- Optional S-100 interface with 2 vacant slots.
- An optional RS-232C serial communications port for modems \& acoustic couplers. May also drive a teleprinter.

CHEAPEST PER BYTE!

DICK SMITH
SYSTEM 80

DISK DRIVE

Fast reliable disk drive that not only gives your System 80 dramatically increased speed but also increases effective memory. Your computer can handle much more involved programs, and much faster! Drive includes inbuilt power supply. Drive 0 - Cat $\times-4060$
Drive 1 - Cat X-4061
PRINTER CABLE
This is a universal printer cable for connecting any standand centronics-type printer (eg. our X-3250 or $X-3260$ printers) to either the $X-4020$ expansion unit or $X-4013$ printer interface. DAISY CHAIN DRIVE CABLE
The 'daisy chain' cabie allows you to comect tu tu 4 disk drives, quickly \& easily. $\$ / 450$
 word processor quality - you can save a fortunel
Cat X-3250 BRAND NEW DAT A BEAUTVI PRINTER \& WHAT A BEA

THIS TOP VALUE

HI RES

GREEN SCREEN MONITOR

Anti-glare screen with its jitter and ghost free image makes viewing much ONLY easier and sharper. (allows 80 character with 24 lines). A MUST for serious computer hobbyists or professionals.

DIRECT COUPLED \& $1 / 2$ PRICE DATA PHONE MODEM

Our very nowest model
with built-in 2 K buffer
aliowing storage of data to be printed - less down time on the computer. Numerous printing types. Superb (you've got to see ONLY Cat X-3260 to believe) high resolution graphics. You'll save hundreds of dollars on this printerl
Accepts both standard stationery
the Dick Smith DAISY WHEEL PRINTER oin

 Pims at theo imes mas spoed of a golf ball typewriter and is suitable for most curren
able microcomputers. Cat X-3265 NEW!

GIVE YOUR COMPUTER A VOICE!
 SEE THE VOTRAX TYPE-N-TALK

 WAS 5549 ONLY ${ }^{\text {s }} 499$
Dick Smith Electronics

NSW Auburn 6480558 - Bankstown Sq. 707 4888-Blakehurst 5467744 - Bondi Jct. 3871444 Broadway 2113777 - Brookvale 930441 - Chullora 6428922 - Gore Hill 4395311 - Liverpool 6009888 - North Ryde 8883200 - Parramatta 6892188 -Sydney (Bridge St) 275051 - Sydney (York St) 2903377 - Tamworth 661961 - Tighes Hill 611896 - Wallengang 283800 ACT Fyshwick 804944 VIC Cohurg 3834455 - Frankston 7839144 - Geelong 78 6766-Melhourne 679834 - hichmond 4281614 QLD Bristane 229 9377-Buranda 391 6233-Chermside 596255 SA Adelaide 2121962 - Darlington 2988971 - Enfield 260 608B WA Perth (William St) 3286944 Perth (Hay Street) - Cannington 4518666 TAS Hohart 310800

THE DIFFERENCE IS OUR PRODUCTS WORK!!

ILEHEAD Pty Ltd

P.O Box 215, Forestville 2087 Phone: (02) 4524435
MAIL ORDER AND WHOLESALE ONLY

CASHFLOW ANALYSIS

TRS-80 MOD I AND SYSTEM $80 \$ 99.00$

Model 3 version soon - other versions soon depending on demand.

* Probably the most useful program the business and professional user will ever have.
* High-speed video and printer output of just about any analysis of bank transactions for a full financial year (not just current month)
* Holds 1500 entries, lists by classification, cheque book, description etc. PLUS - full video and printer output of summarised analysis sheet - Compare cashflow with your predetermined budget
* Requires 48K single disk system. 35-80 tracks (please state track amount when ordering)
* Full double entry system
* Program can be modified to your specifications for a reasonable fee
* Used by chartered accountants
* Ideal for multi-business or multi-cash flow situation

Please add $\$ 2.00 \mathrm{P}$. \& P .

HEAVY DUTY POWER LINE FILTERS $\$ 70.00$

* The only commercially available filter with varister circuitry
* No microcomputer should be without one!

Please add \$5.00 P. \& P. (They're HEAVY!)

PROFESSIONAL UPGRADE

For TRS 80 Model 1 disk systems
Does your system suffer from the occasional silent death?
Does it mysteriously re-boot in the middle of your most important data transfer?
Does your program "scramble" in memory?
Do your disks suddenly become unreadable?
If you want your system to run so reliably that it becomes almost boring -
You need our PROFESSIONAL UPGRADE.
We check out every component of your keyboard and interface.
We do several modifications to improve reliability. We GUARANTEE a massive increase in performance and reliability.

$$
\text { Keyboard and interface } \quad \$ 250.00
$$

Pickup and delivery Sydney metropolitan area $\$ 10$ each way.
48 hours service if we pick up and deliver.
Out of town clients - Phone (02) 4524435
to arrange transport.
pletely expelled before the software is distributed to the marketplace. In keeping with the inexpensive machine for which the programs are designed, the range of ten cassettes retail for around $\$ 14$ each.

VIC Education is keen to promote education software at this level, so if you have suitable material and are interested in having it marketed write to Dennis Argall at P.O. Box E230, Canberra, 2600.

Apple III Advanced Visicalc

The Visicalc Advanced Version program protects any areas of a worksheet you don't want changed. You need not worry about someone accidentally changing a formula, title or any other important feature. It also provides comprehensive on-screen help, with the "?" key, to assist users in completing their worksheets.

And the worksheets you've already developed with your Visicale 111 program on your

Apple III are upward compatible with the Visicale Advanced Version program.

Perfect?

The Kaypro computer now comes with a new suit of software in the basic price of $\$ 2950$. It's comprised of five modules each prefixed with the soinewhat snug name "Perfect". Perfect-Writer and Perfect-Speller constitute a wordprocessing/dictionary; Perfect-Calc is a spreadsheet program; Perfect-File a database and Profit-Plan is a cash flow planner. This software wasn't. available for the review last month so you'll have to take this into account if you're about to buy. More details from President Computers.

Teaching Tandy

Closely following Apple's special offer to schools, Tandy has announced discounts to schools for the TRS-80 and associated peripherals. Tandy

Commercial Software Source Code

IMS Ver 2.2 Now available
Includes latest enhancements, tax changes, etc. Debtors
Stock/Invoicing
) $\$ 750$
Creditors) each.*
General Ledger)

* No further Rovalty payments

Special Osborne Version also available.

IMS Ver 3.1 \& Ascent Series code available in object form only. Price list on application.

582 St Kilda Road,
Melbourne 3004.
Tel: (03) 51 9156. Telex 36620

has developed a number of products with specific applications to schools, the most notable being the "Network 2 Controller" which enables teachers to set up an interactive classroom computer system with up to 16 non-disk Model III "student stations".

Until the special offer expires at the end of February, Tandy is offering to match the number of student stations purchased with an equivalent TRS-80 Pocket Computer More information can be obtained from Michael Lehman on (02) 6386633 .

Bludners extra

Due to rushed printing and production schedules to get this December issue out earlier than usual, a gremlin has crept into The Technical Bookshop's advertisement on page 24 There's no provision for the purchaser's name or address, so if you're ordering please, please include your name and address. And also please do cut up your copy of $A P C$ by using the somewhat lacking order form so The Technical Bookshop know which of their
advertisements is bringing in the best response.

Programmer

A multi-function card has been released in Sydney for the Apple II. It's a combined EPROM programmer, memory and I/O device. The memory facility is comprised of up to 24 k of EPROM in two 12 k banks (equivalent to two Apple ROM boards) and $2 k$ of CMOS RAM with optional battery backup.

For more information contact the New Generation Computer Store on (02) 4274780.

PAUG

A users' group has been formed apparently because professional and business users are fed-up and they're not going to take it anymore: "The Professional Apple Users' Group was born out of frustration with the present level of support business and professional users are
receiving. Too many times we have heard stories of users being sold substandard software, software that doesn't suit Australian conditions, software which is incompatible with hardware, peripherals that won't work with critical pieces of software, and just plain lies or half truths about product capabilities. We're fed up with this situation and we intend to do something about it", says the press release

This group, called the PAUG is publishing a magazine titled PRO (first issue October '82) which is a twenty four page presentation of reviews and articles on aspects of the Apple II. A free sample of PRO can be obtained by sending a large self addressed envelope to PAUG, GPO Box 969G, Melbourne, 3001.

Smaller, faster, cheaper plotting from Watanabe

Watanabe, the leading Japanese plotter manufacturer, has finally broken the Y100,000
barrier. The Miplot Junior DA6000 is slated to sell for $\$ 390$ in Japan and is fully command compatible with its predecessor, the Miplot.

Plotting speed is said to be 20 cm per second, twice as fast as the Miplot. It's half the size and a third the weight too Step size is 0.1 mm .

An optional ROM allows circles, arcs and kana (Japanese phonetic "letters") to be plotted. The Miplot Junior interfaces through an eight-bit Centronics type interface.

Watanabe expects to sell 10,000 units over the next year.

4 colour printers sell for \$155

A new 4-colour printer plotter - the PC-6022 - has been jointly announced by NEC and sister company Shin Nippon Denki.

The PC-6022 can print or plot in four colours (black, red, green and blue) and has an average print speed of 12

MEMOREX PTY LTD, SYONEY (HEAD OFFICE) (02) 908-2211; MELBOURNE (03) 267-2955; PERTH (09) 381-7155.

COMPUTERS FOR CHRISTMAS

TAKE ADVANTAGE OF THE HOLIDAYS TO GET TO KNOW YOUR NEW COMPUTER
COMPAK
HAVE GOT EXTRA STOCKS AND SPECIAL DEALS

FOR CHRISTMAS

* PRINTERS
* DRIVES
* ACCESSORIES
* HOME \& BUSINESS SYSTEMS
* SOFTWARE PACKAGES
TO SUIT MOST POPULAR BRANDS
COME AND SEE US
WE ARE OPEN OVER
THE CHRISTMAS PERIOD SO THAT YOU WONT MISS OUT OVER THE HOLIDAYS

SUPER CHRISTMAS SALE

V-10 SINGLE BOARD COMPUTER
was $\$ 946$ NOW $\$ 625^{\circ}$
Build your own CP/M system in less than 1 hour!

FEATURES:

* 4 MHz Z 80 CPU
* 64 K RAM
* $8^{\prime \prime} \& 5^{\prime \prime}$ F.D.C.
- 80×25 Video
* $2 \times$ RS 232 Ports
* Centronics Printer Port

OR
$\checkmark-10$ COMPUTER KIT including: $V-10$ SINGLE BOARD COMPUTER CP/M 2.2 POWER SUPPLY \& CABLES \& FULL MANUAL

ONLY $\$ 895^{*}$ Fully Tested

DISK DRIVE SPECIALS FOR V-10
8" MITSUBISHI DRIVES \& POWER SUPPLY ONLY \$795*
5" MITSUBISHI DRIVES \& POWER SUPPLY (80 Track DS.DD) only \$550* * + Sales Tax

VIC-20

HAS ARRIVED AT COMPAK
MAIL ORDER OR CALL FOR INSTANT SERVICE

ALSO ALL VIC-20 ACCESS.
MAIL OR CALL!

OPEN DURING CHRISTMAS HOLIDAYS

COME IN AND LOOK OVER OUR RANGE OF MICROCOMPUTERS DURING YOUR HOLIDAYS

WE ARE OPEN FROM JAN 4TH AND WILL BE PLEASED TO DISCUSS YOUR MICRO REQUIREMENTS

EPSON SPECIALS!!!

EPSON PRINTERS
NEW TYPE 3 NOW AVAILABLE M 880 FRIC/TRACTOR $\quad \$ 850+$ Tax $\$ 999$ incl. Tax M $\times 100$ FRIC/TRACTOR $\$ 1100+$ Tax $\$ 1250 \mathrm{incl}$ Tax

COMPUTERS FOR AUSTRALIA

COMPAK SELLS,
SUPPORTS, IMPORTS, MANUFACTURES, WHOLESALES

SORCERER MICRO SORCERER DISKS APPLE MICRO APPLE ADD-ONS TRS-80 MOD III

VII MICRO ARCHIVES II DISCOVERY EPSON PRINTERS

ARCHIVES III MITSUBISHI DISKS C.ITOH PRINTERS NATIONAL DISKS OLIVETTI TWRS

ADLER TWRS TEAC DISKS AMUST V-10 MICRO COMPAK MICROS SVA APPLE PROD.

SPECIAL UNTIL XMAS ONLY

EIGHT INCH

FLOPPIES ON APPLE
SVA CONTROLLER AND OUR 8" DISK UNITS NOW RUNNING

CP/M AND APPLESOFT SEE OPERATING AT OUR SHOPS

Ex Tax Inc Tax
*Single 8" 1 Mbyte unit
with Cabinet, Cont.,
Power Supply, Ready
to run
\$1490 \$1750

* Dual 8"' 2 Mb unit $\$ 2390 \$ 2790$
* Controller only
$\$ 2390$
$\$ 690$$\$ 810$

CHRISTMAS SPECIAL
C.ITOH 1550 PRINTER
$)_{+T A X}$

XXX SCOOP XXX
PURCHASE

NEW APPLE ${ }^{\text {M }}$ COMPATIBLE DISK DRIVES

SLIMLINE - FAST ACCESS
NEW JAPANESE DRIVE AND CONTROLLER IMPORTED DIRECT BY COMPAK

$\mathbf{\$ 5 9 5 - 0 0}$ extax

* READS ALL APPLE DISKS RUNS ON APPLE CONTROLLER
* AUTOMATICALLY READS DOS 3.3/3.2

APPLE DISK RUNS ON COMPAK CONTROLLER
INC CONTROLLER
$\$ 714.00$
INC TAX
CAT AAA- 1
EXCLUDING CONTROLLER $\$ 445.00$ EX TAX CAT AAA-2
$\$ 570.00$ INC TAX

APPLE FDD
COMPAK FDD
CONTROLLER

ALSO COMPATIBLE WITH COMPAK VII SYSTEMS

APPLE DOS DISKETTE \& MANUALS SUPPLIED WITH AAA-1

LOW PRICES!

C. ITOH PRINTERS

STAR with Apple I/F
$\$ 495.00$ ex $\$ 595.00$ inc $8510120 \mathrm{CPS} 80 \mathrm{COL} \quad \$ 815.00$ ex $\$ 999.00$ inc $\$ 1740.00$ ex $\$ 1990.00$ inc
"THIS MONTH'S SPECIAL"

C. ITOH 1550 PRINTER

* 120 C.P.S.
* 15" Carriage
* Bit Image Graphics
* Bi Direct. with Logic Seeking Head
* Tractor/Friction Feed
* Serial/Centronics Parallel I/F
* 3 K Byte Buffer

MITSUBISHI 8" FDD NATIONAL 8" FDD

HIGH QUALITY JAPANESE
FLOPPY * DOUBLE SIDED

* DOUBLE DENSITY
* UP TO 1.2 MBYTE

STANDARD 8
$\$ 595$ ex Tax
$\$ 699$ inc Tax
CAT MIT-8A

SLIMLINE 8 $\$ 690$ ex Tax $\$ 795$ inc Tax CAT NAT 8

FLOPPY DISK DRIVES, DISK CABINETS AND POWER SUPPLIES

COMPAK IMPORTS A LARGE RANGE OF DISK DRIVES AND LOCALLY MANUFACTURERS DISK CABINETS TO PROVIDE COMPLETE DISK UNITS

CAT APL-8A APPLE 8IN DISK UNIT \& CONT.
CAT SOR - 8 A SORCERER BIN DISK UNIT \& CONT. CAT SOR-5A SORCERER SIN DISK UNIT \& CONT. CAT MIT-8U ADD-ON 8IN DISK UNIT \& CONT.
$1 \mathrm{mBYTE} \$ 1590 \mathrm{ex}$ Tax 1 mBYTE $\$ 1490$ ex Tax .7mBYTE \$1190 ex Tax. $1 \mathrm{mBYTE} \$ 845 \mathrm{ex}$ Tax

MAIL ORDER WORKS WITH COMPAK!

IN AUSTRALIA COMPUTER MAIL ORDER HAS NOW COME OF AGE.
WITH ALL OF OUR OTHER ORDERS WE PROCESS MAIL ORDERS ON OUR COMPUTER SYSTEMS TO GIVE YOU
WE ARE CONSTANTLY SENDING OUT COMPLETE SYSTEMS AND WILL GIVE PERSONAL SERVICE TO YOUR MAIL ORDER! READ MONTHLY APC FOR NEW PRODUCTS!

SORCERER IS A TRADE MARK OF EXIDY CORPORATION; TRS-80 IS A TRADE MARK OF TANDY CORPORATION

Emona launches a New Micro-Professor MpF-III

A VERSATILE PERSONAL COMPUTER FOR PEOPLE FROM THE AGE OF 7 TO 70.

The Microprocessor MPF-II is the perfect computer for modern homes.
All the features that a home/personal computer can have are packaged in the compact, portable MPF-II. Yet, the booksize computer has some other unique features that you cannot find on other computers.
SPECIFICATIONS OF THE MPF-II

CPU		R6502
ROM		16K Bytes
RAM		64K Bytes
BASIC Totemeter		More than 90 instructions stronger than those for Apple II
Video Display	Type	Memory mapped into system RAM.
	Mode	Text, low-resolution graphics, high-resolution graphics (three modes are mixed).
	Screen	960 characters (24 lines, 40 columns).
	Character Type	5×7 dot matrix.
	Character Set	Upper case ASCII, 64 characters.
	Graphics Capacity	1920 blocks (low resolution) in a 40 by 48 array. 53760 dots (high resolution) in a 280 by 192 array.
	Numbers of Colours	6 colours.
Keyboard		49 alphanumeric and function keys.
Cassette Interface		Use various cassette tapes and cartridges
Software Cartridge Interface		as data storage units.
Printer Interface		Connects to printers with Centronics interface.
Display Interface		Connects to colour home TVs or video display.
Remote Control Paddle		Used for education \& entertainment.
Speaker		$8 \Omega 21 / 4$ inches, 0.25 W .
Power		A switching power supply is provided to convert AC power to required power supply.
Dimensions		$9.84 \times 7.16 \times 1.24$ inches.

- yOU CAN USE THE MPF-II IN THE HOME, OFFICE, SCHOOL, ENGINEERING APPLICATIONS OR JUST FOR FUN.
THE MPF - II CAN BE CONNECTED TO ANY COLOUR TV SET AND CASSETTE RECORDER.
- OPTIONS INCLUDE VIDEO MONITOR, THERMAL PRINTER, FULL SIZE KEYBOARD, REMOTE CONTROL PAD, RS 232C INTERFACE BOARD, FLOPPY DISK DRIVE, SPEECH SYNTHESISER BOARD, SOUND GENERATOR BOARD, CHINESE CHARACTERS CONTROLLER AND A HOST OF SOFTWARE CASSETTES AND CARTRIDGES.

FOR FURTHER INFORMATION PLEASE CONTACT:
SOLE AUSTRALIAN AGENT

EMONA ENTERPRISES PTY. LTD.

CBC Bank Building, 661 George Street, Haymarket, Sydney (02) 212-4815, 2113038.
TRADE ENQUIRIES WELCOME

ALSO AVAILABLE FROM:
NSW: David Reid Electronics, 29 6601. VIC: Radio Parts, 329 7888. SA: Int Communication Systems P/L, 47 3688, WA: Hinco Engineering P/L, 381 4477, ACT: Electronic Components P/L, 80 4654, TAS: D \& I Agencies, 232842.
characters per second. Continuous 24.5 mm (10 inch) roll paper is used.

The printer plotter can be operated under program or manual control. Software or manual switching allows font and character size to be changed.

The PC-6022 is intended primarily to produce diagrams, graphs and text for the PC-6000 series of computers but can also be connected to other computers. The input is 8 -bit parallel Centronics type.

The PC-6022 will sell for Y39,800 (\$155) and sales commence in Japan on 21 November.

IBM compatible portable micros

Two companies that believe

 IBM will dominate the micro market recently introduced portable microcomputers in New York, which they claim are compatible with the IBM Personal Computer.The Compaq computer from Compaq Computer Corporation, a Houston, Texas based company, is a tightly packaged 281b box that contains up to two 51/4 inch floppy disk drives, a detachable keyboard identical to the IBM PC's and a nine inch diagonal display.

The Dot computer, from Computer Devices Inc, a Burlington, Mass. based company making portable terminals, weighs slightly less at 26 lb . and uses $31 / 2$ inch Sony disk drives. It uses a 9 by
5 inch display, and in some configurations comes with a built-in dot matrix thermal printer and a direct connection 300/1200 baud modem.

Both systems, like the IBM PC, use the Intel 8088 microprocessor and run Microsoft MSDOS operating software. The Dot comes with a separate Z80 processor for running CP/M software. Compaq claims that any software designed for the IBM PC will run on its computer without modification.
"We had to have compatibility. We never traded compatibility for another characteristic," said Rod Canion,
president of Compaq. "To run just MSDOS software does not necessarily mean that a computer will be IBM compatible," he added.

The Dot computer runs MSDOS software that is converted to Sony $31 / 2$ inch diskette format. Computer Devices supplies a "dealer kit" for US $\$ 8,000$, which performs this conversion. "We think the media world is going to remain
inconsistent and incompatible, but that this is going to be compensated for through networking and communications," said Seaforth Lyle, president of Computer Devices.

He said IBM's PC software could be downloaded to Dot because the $31 / 2$ inch floppies could be formatted in the same way as the IBM $51 / 4$ inch diskettes.

IBM PC hardware compatibility poses different problems for Dot. Lyle said PC add-on boards longer than 10 inches will not fit on Dot. Cumpaq, with a bigger box, does not face this restriction. Although most boards are 10 inches, colour graphics boards for the IBM PC tend to be longer.

A standard 128 Kbyte
Compaq system with one drive, RGB video and composite video interface, parallel printer interface, two hardware expansion slots, MSDOS software and a socket for an Intel 8087 microprocessor will retail at US $\$ 2,995$. A similar configured IBM PC costs US $\$ 600$ more, according to Compaq president Rod Canion.

Compaq will start shipping its computer in January 1983, says Canion. A stripped down version of Dot, aimed at the OEM market with 32 Kbytes of memory, no printer, no modem and no disks, is available for US $\$ 2,995$.

Since most of the software which Computer Devices plans to offer with the system occupies a minimum of between 64 Kbytes and 128 Kbytes, this model of Dot is unlikely to appeal to end users.

A more useful configuration, however, which will retail for about US $\$ 4,200$ has 128 Kbytes RAM, 24 Kbytes of user programmable ROM memory, one disk drive, a built-in printer, 300 baud modem, asynchronous communications, two hardware phantom slots, and MSDOS software will retail for about US $\$ 4,200$. The 300/1200 baud modem costs US $\$ 950$.

Small volume shipments start this month.

Pro Digital

Prospero Software recently announced its decision to make the Pro Pascal compiler available on the DEC range of personal computers, including the Rainbow. An agreement to this effect has recently been signed which will run initially for five years giving DEC worldwide marketing rights for Pro Pascal on its own computers. Pro Pascal will be included in DEC's classified sof tware directory.

Maggie Burton

THIS IS A HAND HELD VERSION OF THE VERY POPULAR HP-85A DESK TOP COMPUTER

THE HP-75C COMPUTER INCLUDES:-

- 48K ROM - BUILT IN OPERATING SYSTEM, BASIC LANGUAGE

- 16K RAM - USER MEMORY, EXPANDABLE TO 24K
- BUILT IN MAGNETIC CARD READER
- BUILT IN REAL TIME CLOCK WITH ALARM AND APPOINTMENTS MODE
- BUILT IN HP-IL INTERFACE FOR CONNECTION TO OTHER HP PRODUCTS

COME TO THE EXPERTS AT

bef COMPUIER SHOP

10 HODDLE STREET, ABBOTSFORD
VIC 3067
331 PACIFIC HIGHWAY, CROWS NEST,
NSW 2065
(03) 4173211
(02) 4362111

ROB ${ }^{\prime}$ CHRISTMAS SUGGESTIONS VIC 20 - \$299
 SAVE $\$ 100$

ATARI 400-\$599

WITH 'BASIC'

+ FREE "STAR RAIDERS"

HITACHI PEACH - \$2390
 GREEN SCREEN, DISK DRIVE \& GAMES DRIVE

 OSBORNE $1 \mathbf{- \$ 1 9 5 0}$ ввоаm cass moot sisio

DAISY WHEEL PRINTER - \$1295

ALL PRICES INCLUDE SALES TAX

AND 50.

Business Brain

BUSINESS PACK 1

Peach CPU - extra memory Hi-quality green screen. Dual 5 " drives 80 CPS printer
$\$ 4200$ incl. tax
BUSINESS PACK 2
Peach CPU - extra memory Hi-quality green screen. Dual $8^{\prime \prime}$ drives 80 CPS printer

With 64 K CPM system

Business Program Modules $\$ 310$ each

With Hitachi Peach buying a business computer is made simple. Now Robs Computer Centre brings you 4 Hitachi Peach Business Packs - you can be sure there is one to suit your needs.
These unique Business Packs come with incredible features built into each system to give you total control of your business at a fraction of cost of any other system.

DELUXE COLOUR BUSINESS PACK 3

Peach CPU - extra memory Hi-quality colour screen. Dual $8^{\prime \prime}$ drives -2.2 Meg. 80 CPS printer

With full colour CPM

HI-WRITER WORD
 PROCESSOR PACK 4

Inc. Hi-writer program Peach CPU - extra memory Hiquality green screen. Dual 5 " drives, printer

THE COMMODORE

Peach roots in down under

Management Sciences America Inc, which claims to be the world's largest independent software company, has announced the setting up of a Peachtree Software
International sales and support operation in Australia on 1st January '83.

Peachtree Software International was established in 1975 and acquired by MSA in July 1981. Peachtree began international operations in January 1982 when offices were opened in the UK.

Commenting on the decision to establish the Peachtree operation in Australia, Robert Fisher, general manager designate, said, "We realise the importance of the Australian market place and believe it has an enormous potential.

Although we may be seen to be making a late entry to the microsoftware market in Australia we know that our pedigree and the stability of our software will do much to open the door for our products. We will initially concentrate on supplying manufacturers and distributors of hardware in

Australia and New Zealand, with a comprehensive range of proven accounting and office systems for their existing and future machines."

Peachtree Software has already had considerable success in making agreements with manufacturers in the UK and in the USA. Peachtree Soltware is widely sold under manu-
facturer's own labels; such distributors include IBM, Hewlett Packard, Zenith and Apple.

For further information contact Barry Nash, Management Science America (Aust) on (02) 9290711.

Blowing up a storm

Anybody who has written a Basic program longer than 20 lines will have found, one day, that there are two instructions to GOTO 200, and they can't remember where the other one is, or that there are three GOSUB 3000 s and one of them is line 450 , but what of the other two?

On the Apple these people can now do a simple search for a string, using new software called Gale, from MicroSparc.

Gale 'gives Applesoft programmers the ability to perform global searches and replacement of any specified character or characters throughout a program,' says the supplier in Lincoln, Massachusetts. 'Line by line editing allows you to make fast changes without recopying an entire line - you can delete characters, insert characters, compact a line by replacing PRINT statements with the equivalent (a question mark), enter lower case characters, and so on.'

Details P.O. Box 325, Lincoln, Mass 01773 , or try phoning (617) 2599710.

The biggest little disks in Japan

Toshiba is claiming the highest data density on an eight-inch disk in Japan - up to 94.4 megabytes. Four machines have been announced and sample quantities will be
available from next January
The four machines (with sample Japanese prices) are: MK184F ($\$ 3,500$) for 26.1 Mbytes; MK 184FL (\$3.900) for 94.4 Mb ; MK1 82 FL ($\$ 3,500$) for $84 \mathrm{Mb} ; \mathrm{MK} 182 \mathrm{FL}$ ($\$ 3,500$) for 67.4 Mb .

All four models have internal microprocessors to simplify interfacing with the host mini or microcomputer. The carriage has been designed to have a high resonant point and specially developed positioning devices enable the track density to be three times higher than previous designs - 900 tracks per inch.

CP/M Fair

The idea of a CP/M Fair must be absolutely unique in the history of computing. It is going to happen, nonetheless, in January in San Francisco.

Previous gatherings of likeminded user groups have always centered on a language or a machine - and, mostly, the languages on one machine have been different enough from those on other machines to keep IBM users from discussing

Texas Instruments
Incl.

- modulator
 - interface cable for 2 recorders - power supply

Complete peripheral expansion unit in stock.

Extended Basic
Speech Editor

Statistics

Home Financial Decisions
Physical Fitness
Early Learning
Beginning Grammar
Add \& Sub. 1-2
Music Maker
Mystery Melody
Video Games I
Mind Challengers
Footbali
Blasto
Hangman
Yahtzee
Car Wars
TI Invaders

Mini Memory
Terminal Emulator II
Household Budget M/ment
Personal Financial Aids
Early Reading
Reading Fun
Number Magic
Multiplication 1
Music Skills Trainer
Video Chess
Video Graphs
Indoor Soccer
The Attack

Hustle

Connect Four
Tombstone City 21 st Cen.
Munch Man
A-Maze-Ing

4K GRAPHICS ROM
This module fits nearly inside the keyboard. The module comes reachy built, fully tested and complate with a 4 k grephic ROM. This gives you 448 extra pre-programmed graphics, your nommal graphic set contains 64 . This means that you now have 512 graphics and with inverse 1024. In the ROM are lower case latters, bombs, bullets, rockets, tanks, a complata sat of invaders graphics and that only accounts for about 50 of them, there are still about 400 EXTRA POWER AND WORKS FROM YOUR NORMAL POWER SUPPIY. $\$ 124.95$.

8 BIT INPUT/OUTPUT PORT

Experimenters dreaml The unit will monitor, or drive robotic devices, sound, light, atc. 4 k
RAM on board ects as memory expension also. Plugs into the beck of the $Z X$, without extre power supply. $\$ 125.00$.

> ZX81 KEYBOARD AND JOYSTICK

A full keyboard with shiftrock and specebarl A sturdy case which houses the $2 X$ and
memory peck. Also evailable: joystick controller, optional extra. $\$ 160.00$. Joy sticks $\$ 10$ ea

$10 \mathrm{am}-6 \mathrm{pm}$
SAT 10 - 1 pm

Cobol with Honeywell or ICL people.
CP / M, however, is an operating system which is not native to any one machine more than any other. The problems which CP / M software designers have vary from machine to machine, but still have more in common with each other than they have to distinguish them.

The scope of the show is enormous. Over 200 exhibition stands are planned, and these 'will show the full' spectrum of application packages, development aids, microcomputers (how did they get in there?), peripherals, accessories, publications and services available to CP/M users.'

The strength of the show is at the same time its weakness.

The strength lies in the fact that this is an 'official' CP/M show, with Gary Kildall himself (the inventor and designer of CP / M and boss of Digital Research which sells it) plus people like Tony Gold, founder of the CP/M Users Group and of Lifeboat Associates, and people like Adam Osborne, who swears by the system and sells a machine which runs it.

In other words, the people who can answer your questions will be there.

But the weakness lies in the fact that the dissidents will not be invited to speak. The organisers will claim that there is no point in llaving dissidents at workshops, where people are trying to get things done, not question the basis of why they need doing.

The organisers will therefore fail to consider ways of moving CP/M away from its dreadful limitations.

Limitations of CP / M are all derived from paper. CP/M is a standard, and it assumes
that you may want to talk to a CP/M machine from a remote teleprinter.

The effect of this is a catastrophe on a comparable level to what would happen to air transport if laws were passed insisting that aircraft should be capable of pulling trains through tunnels.

You can't say this, however, to a CP/M believer. To such a one, the fact that $C P / M$ is a standard is all, and if the standard implies a lowest common denominator, so be it.

Yet without this assumption, we would have had concurrent screens, because there would be nothing to stop them. We would have global, relational data structures, because you could look at them. We would have flexible screen formatting, we would eliminate dual terminals, we would have screen editors, and we would have soft keyboards and screens.

Anyway, that isn't what you will get at CP/M-83, which is the name of the exhibition and conference.

For what you will get, contact Digital Research, or Northeast Expositions Inc, which is contactable at 824 Boylston Street, Chestnut Hill, Mass 02167. Phone, if you like, (617) 7392000.

The exhibition runs from January 21 to 23.

Guy Kewney

Minis losing out

The micro market has burst the minicomputer bubble, figures
just released in America show. Rescarch company Frost and Sullivan predicts, in a report on the minicomputer hardware market, that the US minicomputer business "will advance from $\$ 4.7$ billion in 1981 (last year) to $\$ 12.5$ billion by 1986, in constant 1982 dollars.

This growth, says Frost and Sullivan, while "impressive", falls far short of many predictions made as recently as two years ago.
"This drastic slowing of growth can be attributed to a number of factors - primarily the current economic slump and concommitant high interest rates, but also the availability of microcomputer systems capable of competing with ininicomputers at far lower price levels," says the report.

A minicomputer is a system costing around $\$ 90,000$, according to the company and it predicts that this definition will remain valid even if technology advances.
"Capacities of microcomputers - the fastest growing segment - can be expected to continue to grow," says the report. "Systems with 32-bit architecture will soon be competing with the traditional eight-bit and 16-bit systems providing more impressive price/ performance ratios at the bottom of the market." And as micros get more powerful, the report says, they will undermine more and more mini computer applications.

The study added that user problems in minicomputers were approaching the level encountered in micro systems.

A Frost and Sullivan survey of end users indicated "a significant level of dissatisfaction with the quality of service, and especially support." This is a state of affairs "which one
might more likely expect to find in the microcomputer industry," adds the company rather naively.

The figures put in context the urgency with which Digital Equipment must approach the microcomputer market, since it is, by an enormous margin, the largest minicomputer supplier.

Digital has around 30 per cent of the total US market, followed at some distance by Hewlett-Packard with only 11.6 per cent, Data General marginally behind that at 11.4 per cent, IBM some way after in fourth position (6.8 per cent) and Wang, nearly as big in this area, with a surprising 6.6 per cent.

New micro disk system from Sony

Sony's new $31 / 2$ inch micro disk system is now available to OEM customers. The Japanese company has already signed a $\$ 30$ million deal with Hewlett Packard which will be incorporating the system in future products. It uses a 3.5 inch micro disk with a storage capacity said to be twice that of regular 8 inch and 5.25 inch mini disks.

The Sony system has a storage capacity of 437.5 Kbytes, and is a double density, single-sided disk. It has one touch disk load/unload, and fail-safe disk insertion.
"The 3.5 inch micro floppy disk is a growth area for Sony and it has already been seen as a major break-through by Hewlett

We supply software on the following formats produced by us in house:

8"

Apple * North Star Double Density (Horizon \& Advantage) Micropolis Mod II Quad Density 16 sector (Sorcerer, Vector, etc) Osbome * Xerox * ICLPC * Televideo * ABC Heath Single Density * Oki if-800 * HP 87 and 125 DEC VT-180 and new Personal Computers * Otrona Atache Wangwriter * IBM PC * Kaypro

IBM Single Density (the universal standard)
New formats are being added all the time so check with us for formats not listed.
We also provide a copy service from one format to another, call for details.
SEND FOR OUR LATEST PRICE LIST.

dBase II Demo \$75

dBase II Real \$650
Money Back Guarantee
dBase II now comes with
"Zip" screen and report generator. We use dBase II ourselves, highly recommend and support it.

AUSTRALIAN DISTRIBUTORS
FOR dBASE

Packard who will be using the system as a future standard for some of its computer products," said Sony product manager Robin Allison.

National launches low cost home micros

Matsushita, better known by their National brand name, has announced a $\$ 318$ addition to their range of domestic computers.

The new model is the JR-200 and the Y79,800 price tag makes it one of the cheaper colour computers available in Japan. As supplied, the JR-200 has 32 k of RAM and 16 k of ROM with Basic built-in. Eight colours (black, blue, red, purple, pale blue, yellow and white) are displayable using either a domestic TV set or a colour monitor. Video outputs provided are UHF, composite and RGB.

Also designed to appeal to the home user is a built-in five octave sound generator which can harmonise three voices at a time. The baud rate for the cassette interface can be switched between 2400 and 600 baud for faster progran storage and retrieval.

The Computer Company expects to have stock here in the first quarter of next year.

Paasokon -terebi

. . is the word coined by Sharp for its latest marketing gimmick - a personal computer (paasokon) combined with a television receiver (terebi).

The new system, called the X1, was unveiled to the waiting masses on 19th October at the Electronics '82 Show in Tokyo. Sales will start in mid November at a retail price of $\mathrm{Y} 268,000$ ($\$ 1045$). The X1 is based on the CZ-800C microcomputer and the CZ-800D 14 inch colour television. The unit allows computer and video
(broadcast) signals to be combined on the screen. Possible applications are said to include video editing.

Programs galore

"Programs" freaks will delight in the release of "VIC Innovative Computing" published by Melbourne House. It's thirty Basic games listings and the odd full colour picture of the games in action. Most of the programs are also available on a series of three cassettes at $\$ 20.00$ each. Both the cassettes and book (\$17.95) are available from Compshop Australia at 4/75 Palmerston Crescent, South Melbourne.

Sirius hard disk

An integral $5 \frac{1}{4}$ inch winchester hard disk is now available for the Sirius 1 providing 10.6 Mb of online storage.

Chuck Peddle, president of Sirius Systems Technology Inc.,
announced the new offering at the opening of the SICOB Trade Show in Paris on September 22nd, 1982.

Barson Computers introduced the Sirius 1 Winchester on October 21st at a Sirius dealer seminar at Melbourne University. "Already recognised as the most powerful 16-bit micro on the market, the addition of an integrated 10 Mb winchester reinforces this position, by increasing disk storage capacity and access speed, and by enhancing data integrity", said Julian Barson.

Mr Barson recently returned from the Paris Trade Show and a visit to A.C.T. in the United Kingdom and the U.S.A., where he studied computer marketing and microcomputer developments.

He said "Sirius is enormously successful in all its market areas. It has fulfilled all its early promises and is definitely the leader in technology. It has gained a competitive edge with new developments such as the 10.6 Mb winchester and networking to be introduced soon.

Further details from Greg Johnstone on (03) 4193033.

Sex Education

NO -- BETTER STILL COMPUTER EDUCATION

P.J.Prentice and Associates, long established computer con sultants are now embarking on an education programme cum familiarisation scheme that is designed to help everybody from the home hobbyist to businessman.
The courses, lasting from 3 to 6 weeks, 1 night a week, 21/2 hours a night, consist of:
Which Computer do I Buy
This course, lasting 3 weeks, is designed to give the home hobbyist an insight into what he/she should look for and an introduction in to the jargon of the computer industry. Cost $\$ 40$
The Basics of the Programming Language called Basic. This course lasting 6 weeks is designed for the beginner in the art of computer programming in the language called Basic. Cost $\$ 100$

Advanced Basic Programming.

This 3 week course is for the people who have a little programming knowledge and wish to know more about the language Basic.

Cost \$50
Tips and Techniques.
This 3 week course will demonstrate some of the tips and rechniques that may be applied to make programming in Basic more efficient.

Cost \$40
Pits and Pitfalls of Computer Purchase.
This 4 week course is designed for the small to medium sized businesses who are contemplating installing a computer and software packages. It explains the questions that should be asked and also the steps that should be taken to insure a successful implementation of their new computer system.

Cost \$50
For further information contact Peter Prentice at
P. J. PRENTICE and ASSOCIATES PTY. LTD. 10 POLICE ROAD, ROWVILLE, 3178 VIC.
TELEPHONE: (03) 7953113

Xmas deals from Peach Computer Products

HARDWARE:
COLUMBIA, IBM, PEACH COMPUTERS PRICE ON APPLICATION

Box of 10 Verbatim 51/4" SS DD $\$ 54-00-\$ 40.00$ Epson MX80 III F/T \$1750:00 \$908.00 Epson MX 100 III F/T $\$ 1550.00$ \$1181.00 C. ITOH $8510 \$ 1050.00-\$ 850.00$ Hi Res Green Screen 15 Meg $\$ 29900 \mathbf{\$ 2 1 7 . 0 0}$

SOFTWARE:

Scrambler $\$ 40.00$ - $\$ 35.00$ (See advertisement in Oct. APC for details)
New Releases-
Star Trek Adventure with 3D graphics $\$ 26-00 \quad \$ 20.00$ Ghost Gobblers, new updated version gives you a new frame of dots everytime. Has five speed levels and the disk version keeps track of the 10 highest scores.
\$50.00 $\$ 25.00$
Discount prices on all Hi-Soft products, e.g. Hiwriter \$70.00 \$250.00
Hifinance, per package $\$ 34000 \$ 250.00$
Procalc $\$ 370.00 \$ 250.00$
All prices include Sales Tax Freight charges extra.
PEACH COMPUTER PRODUCTS 1 Botherambo Street, Richmond 3121

Telephone: (03) 429-3216

The model VP-6801A, A4 type multicolor intelligent digital plotter is designed for use in graphic writing and recording in combination with personal computers and measurement systems with micro processors.
It features high speed writing of $200 \mathrm{~mm} / \mathrm{sec}, 6$-color graphic functions and versatile intelligent software such as interpolation function, circle drawing, X and Y grid drawing, and X and Y axis drawing. Various marks and alphabet drawing are also available with desired size and direction. The print mode is useful as a printer with 60 characters $\times 40$ lines for LIST print out and self check of the plotter.

SCIENTIFIC DEVICES AUSTRALIA PTY.LTD.
2 JACKS ROAD. SOUTH OAKLEIGH, VICTORIA, 3167
PHONE: (03) 5793622
31 HALSEY ROAD, ELIZABETH EAST, S.A. 5112
PHONE: (08) 2556575
35-37 HUME STREET, CROWS NEST, N.S.W. 2065 PHONE: (02) 435015

DATABASE COMPARISON THESTORY SO FAR

In this series so far I've looked at several packages for managing files of information, ranging in complexity and price from Cardbox, a simple but powerful 'electronic card index' system running under CP/M and costing \$298, to FMS80, a complex and sophisticated system with its own programming language and costing (in its full version) $\$ 1100$. In this article I shall try to put together some of the qualitative information in a way which will make it easier to compare packages and also show the results of some Benchmarks to try and get some feel for comparative speed.

Benchmarks

It is important to remember when looking at the timings that these are only of value in comparing one package with another - they may not give any indication of how quickly a package will run on your system. The machine I used for the tests was a Sirius with 128 k of memory and a Z80 processor card; all the tests on CP/M packages were run on the Z80 card under CP/M-80 with the exception of DMS, for which I used the native 8088 processor. I wouldn't expect that to make any significant difference when comparing DMS with the rest, as by far the major limiting factor in data management is disk access time, where the hardware is of course the same for both processors. Silicon Office runs only on the PET so to run those tests I borrowed a 80 -column PET with two 500 k disk drives.

The tests them selves were conducted using a test file of plain text data created by a Basic program. The purpose of this was to ensure a completely determined set of data identical to all the packages and relatively easy to transport to each system. The data file consisted of 1000 records containing seven fields and 46 characters, which were then imported into a file, where each record contained 21 fields, totalling 152 characters. This arrangement made it possible to test the package's agility at importing information from elsewhere and the efficiency of the storage methods (since part of each of the larger records could either be null or blank, depending on the file organisation). The tests were designed to cover

Kathy Lang presents a comparison

of the more popular databases for microcomputers on the market today.
the major headings I've used in assessing each package. The results of each test are shown in a table under the relevant section, with an attempt at a qualitative assessment of the same facilities alongside. The purpose of the latter is to try to give some impression of the power and ease of use of the particular facility, as well as its speed.

Four of the packages I tried, Cardbox, Silicon Office, DBMSIII, and FMS80 , were able to read my file only if I wrote a special program (in any language, SO own, Basic, EFM respectively) for the purpose. DMS, dBaseII and Condor all had commands or procedures for the purpose, so a program wasn't needed. To import 'stranger' files into Pearl requires a special one-off program which can be written only by its originators; apparently this can be done only in the US.

Data models

Most of the packages in this series call themselves 'data base management systems' but, unlike true DBMS, they are all basically single file systems. They thus do not vary tremendously in file organisation and methods of direct access to information. All hold their data either in linear files with indexes, or in relational files with or without indexes. (All that is meant by 'relational' here is that every field in the record is 'related' to every other, without any explicit hierarchy or network arrangement - in fact DBMS does use a kind of network to link records from different files together, but not within a single file.)

Five of the packages (Condor, dBaseII, DBMS, FMS-80 and Pearl) permit the linking of two or more files by keys, although the DBMS approach is rather unusual and requires more human intervention than the others. All the packages except Cardbox and Condor use fixed length records and, with very minor exceptions, fixed length fields. Figure 1 shows the limit-
ations each package places on size of file, record, number of fields, number of records, etc.

Input and editing

All the packages require you to decide on at least an initial format for a data file before you can put information into it. I personally find the most satisfactory method of doing this is to 'paint' the format on the screen, in the way that most of the packages now permit (but not DBMS). Some are easier to use than others - for instance, I found Silicon Office tricky because the start and end of field markers were very similar, and Cardbox's three-tier naming system I found very confusing. Once designed, and data inserted, the packages vary substantially in the ease with which you can add new fields. In Cardbox this is very easy; in dBaseII and Condor straightforward and in most of the others possible but more difficult and often slow. Figure 2 shows the time taken for each of the packages tested.

Reporting

Only Cardbox uses the same mechanism for designing printed reports and for screen formats. This method of 'painting' the format on the screen is great provided you can keep within the single screen space. The other systems require you to specify row and column positions for each field, heading, etc, with calculations to be performed where this is permitted. dBaseII is rather limited in its ability to display report formats, though whether many users would ever get past the complexity of design to actually use all the features FMS-80 provides I rather doubt.

Selection

It is, of course, very common to want to select records according to particular criteria and display or process them separately. I've used two measures of selection time: one uses two selection criteria and a simple sequential search (ie, no index is used), while the other uses an index and shows indexing as well as access time. Times for both tests

ABGADE FAVOURITES FOR THE TRE-80 AND THE SYSTEM 80.

* SPlGTACULAR FAST MOVNO MACHINE LANCUAEE AGTION
* * AII WITH SOUND AND GRJAT ANIMATED CRAPHICS
* AIL PROCRAMS HAVE FULY GUAPANTEED WARRANTY

AVAILABLE FROM

Micro Base Computers

 422 Newcastie Si., West Perth, W.A. 6005. Ph: (09) 328-9308Sea Horse Computers 10 Mitchell St
Camden. NSW.
Ph: (046) 666406

City Personal Computer 75 Castlereagh St
Sydney. 2000.
Ph: (02) 2338992.

Software-80
Shop $11 / 200$ Moggill Rd Taringa. Brisbane.
Ph: (07) 3716996.

Computer Campus PtyLtd
11 Rundle St
Kent Town. 5067.
Ph: (08) 424826.

DeForest Software
26 Station St
Nunawading. 3131.
Ph: (03) 8776946

* STAR CRESTA \star

Blast the Falcon Fighters and Fireblrds to pleces.
Can the PHOENIX reach the Empress and smash her to aioms? Great sound effects wilh batileshield.

00 \star DEFENCE PENETRATOR *
Can you infilirate enemy ferriory and destroy the Command Base or will they SCRAMELE our unlverse? Alens, Meteor Storms, Misslles and Atillery Instaliailons will try to destroy you. Smooth realistle scrolling planetscape.

MISSILES!!

MEIEORSII

00 * RALLY RAcER *

Drive through an action packed maze and tyy to hif all the fiags betore Morgan. the mad motorist, or Crazy Harry and his killer hooligans calch youl

0000000000000000000000000000

* STEILAR WARP *

Your craft is armed to the rim with fearsome firepower, as allens altempt to destroy you, your finger liches to use the ullimate weapon - Stellar Warp.

Post to: COSMIC SOFTWARE G.P.O. Box 3494. SYDNEY N.S.W. 2001

Trade enquiries welcome

NAME.

ADDRESS
\qquad

Enclosed \$................... Bankcard/Cheque/Money Order
Expiry Date:
Bankcard Number:...

Signature.

ITEM	QTY	SPRICE EACH	S AMOUNT C
STAR CRESTA		1950	
DEFENCE PENETRATOR		19.50	
RALLY RACER		1950	
STELLAR WARP		19.50	

TOTAL
are shown in Figure 4. When comparing indexing time you should bear in mind the difference between dBaseII and Cardbox, which keep their indexes up to date as they go, and the others which only keep the index to the main key field up to date. You should also remember that both FMS-80 and DMS require you to set up a selection file first - you can't just ask for the selection and display in a single statement, and then modify your request in the light of the display. Condor is also rather inflexible, in that it creates a separate data file each time you request selection, even if you only want one or two records. In Silicon Office, you have to write a program for the kind of selection used in the tests (except when selecting on the key field), since the selection command does a sequential search of every field in every record in the file; my tests used a more discriminating method in a program, but it was still very slow.

Sorting

Here the packages vary considerably in whether you can, or need to, sort the whole data file, or whether sorting the indexes is sufficient to enable you to display records in a particular order. DMS probably has the best approach here: the data file is never sorted, but individual indexes may be created and sorted so that the records are displayed in any required order. In FMS-80 you may sort either data files or indexes, but creation and sorting of indexes are two distinct processes. dBaseII allows you to sort the data file if you need to - and you will if you want to select using nonunique keys and then display in key order. Cardbox doesn't have a sort feature, a curious omission in a package so oriented towards bibliographic and free-text applications - surely libraries need their records in author or title order? Figure 5 shows sort times with one 20 -character field as the key. The figures, shown are for sorting index only, data only, or both, as appropriate.

Adding single records to the file can be done directly - that is by specifying a key value, displaying the record on the screen and editing it the re - in all the packages except Condor, which requires the creation of a transaction file which is applied without intervention from the keyboard. This is the approach which is recommended in FMS-80, but not enforced. Personally I think much of the point of an interactive system is lost if you have to think up possible problems in advance rather than being able to check errors as you go. A decent filehandling system should be able to make on-line updating sufficiently secure for the batch process to be unnecessary except in special circumstances. Figures for batch and for on-line updating are shown in Figure 3.

Indexing

Getting all the information in of course begs the question of how to get it out. All the packages (except Condor in its Levels 1 and 2 versions) have some methods of accessing particular records quickly, but they vary a lot in their power and flexibility. Silicon Office, DMS and FMS-80 require you to choose a primary key field and every record is indexed by that field. DMS and FMS-80

Package	Cardbox	Condor	dBasell	DBMSIII	DMS	FMS-80	Peari	Silicon Office
Max file size	65500 recs t	32767 recs t	65535 recs t	32000 recs t	26214 recs t	CP/M limit	CP/M limit	3 files per disk
Max size record	1404 chars	1023 chars	1000 chars	1400 chars	1024 chars	$64 k$ chars	3080 chars	252 chars
Max no fields	26	127	32^{*}	$20^{* *}$	60	255	250	no limit
Max field size	1404	127	254	70	80	255	80	78
Field	C	CDIE	CNL	CN	CN	CDN	CDN	CN

Field types: $\mathrm{C}=$ Character $/ \mathrm{D}=$ Date $/ \mathrm{I}=$ Integer $/ \mathrm{N}=$ real numbers
Fig 1 Constraints

Package	Cardbox	Condor	dBasell	DMS	FMS-80	Silicon Office
Time for 1000 records to add 1 new field to each	Inst's: just mod definition	6 m	10 m	58 m 30 s	36 m 30 s	3 h 27 m for 250 records
Star rating	$* * * *$	$* * *$	$* * *$	$* *$	$*$	$*$

Fig 2 Time to add one new field to each record

Package	Cardbox	Condor	dBasell	DMS	FMS-80	Silicon Office
Interactive time to add 50 records + Batch	Inst's	NA	Inst's	Inst's	Inst's	3 secs per record
Star rating	$35 s$	25 s	1 m 30 s	1 m 45 s	6 m 30 s	NT

Notes:

+ excludes time to key in new data/NA=Not Available/NT=Not Tested
Fig 3 Time lo add 50 records

Package	Cardbox	Condor	dBasell	DMS	FMS 80	Silicon Office
Sequential Time for 1000 records	2m31s	$\begin{aligned} & 2 \mathrm{~m}+ \\ & \text { scroll } \end{aligned}$	$\begin{aligned} & 3 \mathrm{~m} 20 \mathrm{~s} \\ & \text { total } \end{aligned}$	$\begin{aligned} & 2 \mathrm{~m} 20 \mathrm{~s} \\ & \text { total } \end{aligned}$	$\begin{aligned} & 4 \mathrm{~m} 5 \mathrm{~s}+ \\ & \text { scroll } \end{aligned}$	4 h 25 m for 263 records
Indexed access	8s	NA	Inst's	Inst's	\|nst's	NA
Create Index (25 char field)	NA		(14m44s) if needed	$4 m 45 s$	19m49s	conly one key field)
Star rating	***	***	***	**	**	*

Fig 4 Sequential and indexed read (two criteria, 50 records match)

Package	Cardbox	Condor	dBasell	DMS	FMS-80	Silicon Office
Time to sort 1000 records on 5. char field	NA	26 m 30 s	35 m	5 m 30 s (index only)	NT	$1 \mathrm{h10m}$ for 250 records
Star rating	NA	$* * *$	$* *$	$* * * *$	NT	$* *$

Fig 5 Sorting 1000 records

also allow you to create other indexes to permit fast access by more than one field but these are not kept up to date when the file is updated - you have to do this for yourself. dBasell can keep up to seven indexes per file up to date 'on the fly'. These factors should be born in mind when looking at Figure 4, which shows the times for direct searching, since the indexing times are only significant if indexes have to be reorganised explicitly rather than being included as a (very small per record) overhead in the updating process. Cardbox is the most flexible of all in some respects, in that it permits indexing of all or any items (words) within fields
either automatically or on requesi from the person updating. However, once you have put data into a Cardbox file, if you decide later that you want to index a field which was previously not indexed, then this can be very tedious.

Screen display

Usually you can use the same features for designing a screen format for display and editing. Some packages, notably FMS-80, DMS, Cardbox and the later version of dBaselI, allow you to vary the formats so that some information is not displayed, or shown in different formats for different users. DBMS

ANYTHING IBM CAN DO....

It's 16 BIT. It's IBM PC compatible. And it's here now! President have a new business computer manufactured by Columbia Data Systems of the USA complete with its own software and hardware. It will also run all software and hardware produced for the IBM PC.

At first glance, this machine may bear a certain resemblance to its mentor.

That's before you switch it on.

WHAT A PERFORMANCE!

Appearances can be deceptive as a look at the credentials of the Columbia MPC machine will tell you.

Operating system software is MSDOS ${ }^{\oplus}$ or CP/M 86°.

It's 16 BIT 8088 hardware configuration provides 128 K RAM with parity, two RS-232 serial ports, Centronics parallel printer port, DMA controller, eight levels of interrupt, dual floppy disc system with one megabyte storage, Winchester interface and eight expansion slots.

Not bad for the standard version.

EXAMINE YOUR OPTIONS

Columbia like to leave your options wide open. So they've included 256K RAM boards, 8087 arithmetic co-processor for high speed math functions, dual RS-232/RS422 boards, and a Winchester disc based system.

The Columbia MPC's expansion capability can easily accommodate just about any imaginable hardware configuration including one megabyte RAM and 10 megabyte disc.

PRESIDENT GROUP STAR SERVICE

The President Group offers the services of 290 staff and over 160 vehicles, branches in all states, dealers in country areas and a service network of highly experienced professionals that's second to none. We guarantee the product, the service and the customer's satisfaction.

President is the all-Australian company that specialises in Australian business requirements.
Standard Software includes Electronic spreadsheet and Word Processing with lesson diskette. FOR FURTHER DETAILS, OR IF YOU WOULD LIKE TO BECOME A DEALER YOURSELF, CONTACT

Call one of the President's men for the name of your local
dealer
N.S.W. DISTRIBUTDRS PRESIDENT COMPUTERS NSW 100 George Streat. Hornsby. Tcl: 476 COMPUTERMAX 539 Pittwoter Road Brookvale. Tel: 93 1383 DELTA COMPUTERS 12 Fethorstone Stroet, Bankstown. TI. TUS 6636 DESKTDP CDMPUT Granville. Tel: 6373063 VICTDRIAN DISTRIBUTOR: PRESIDENT COMPUTERS VIC Suite 1,609 St Kildo Rosd, Melbourne. Tell: (03) 5291788 SDUTH AUSTRALI DISTRIBUTDR:
100 Pirie Street
Adelaide. Tel: (08) 2236333 OUEENSLAND DISTRIBUTDR: PRESIDENT CDMPUTERS OLD 416 Logans Rood, Stones Corner, Brisban Tet: 107) 3970888 W.A. DISTRIBUTOR: 176 Wittenoom Street,
East Perth. Tel: (09) 3255722 Eest Perth. Tel: (09) 325
ACT. DISTRIBUTOR: A.C.T. DISTRIBUTOR:
PRESIDENT COMPUTERS Shop 2, Warrmanga Cantre, TASMANIAN DISTRIBUTORS: TASMANIAN COMPUTER CORNER 202 Elizabeth Street. Hobert. Tel: (002) 344044 LAUNCESTON NORTHERN BUSINESS MACHINES 177 Brisbane Street.
Leunceston. Tel: 10031318388

MICROCOMPUTER BENCHTEST SPECIAL AUSTRALIA'S LARGEST SELLING MICROCOMPUTING TITLE BRINGS YOU COMPREHENSIVE BENCHTESTS ON 21 LEADING MICROCOMPUTERS IN ONE COMPLETE VOLUME USE THE COUPON BELOW TO ORDER YOUR COPY OF APC'S BENCHTEST SPECIAL

PEACH SHARP MZ-80S SWCLAR SPECTRUM SIWCLAR ZX81 simius 1 sURERBRAN TASE color TRS80 MODEL II TASS00 MODEL III TH:9/4A
(version III) allows you to 'tag' fields as protected for security reasons.

Calculations

Since Cardbox can handle only text data, it can't do calculations. All the others have some calculating facilities. Those in DMS and FMS-80 are quite powerful - except that you can't modify the order of execution of expressions with brackets! In terms of power and flexibility, dBaseII is easily the best of those I've looked at in this area. Figure 6 shows two tests on calculation. The first involves replacing one field in each record with a value derived from a calculation on another field in the same record. The second simply totals three accumulators to give the sum total of each of three variables.

Security

Important features are the ability to prevent unauthorised access to information, and to see what you've actually done in a session if something should go wrong. DMS and FMS-80 provide the most flexible approach to the first question, while DBMSIII has some comparable features. Looking at recovery trom error and detection of possible deliberate fraud, DMS provides a paper audit trail, though I couldn't find a way to store this on disk; dBaseII allows you to record in a file everything which takes place on the screen. Cardbox has an explicit Repair function should the data become corrupted in any way.

Tailoring

All the packages except Silicon Office and DBMS allow you to tailor the terminal interface to your requirements; SO comes already set up for the PET, and DBMS for whatever machine you've specified when ordering. Though some of the packages try to be helpful, this is still a very thorny area for anyone, especially the novice. I'd especially like to see every package make it possible to specify things like cursor movement codes by actually pressing the key concerned, then there's no mistake. Another essential feature is some con
firmation that the tailoring has worked - before you leave the terminal definition part of the package. Also, the ability to edit an existing terminal definition, rather than starting from scratch, is another necessity. None of these packages did all the se things.

As for tailoring the presentation of the package itself to your needs, this involves a sharp divide between the menu-driven packages and the commanddriven sustems. With the menu-driven approach, as used by DMS and Cardbox, if your application fits that method of working you're fine, otherwise you just have to fit yourself round the package. Cardbox, particularly, would be even better if it had the ability to store search sequences for re-use. In the command-driven packages like Condor, dBasell and Silicon Office, you can set up files containing sequences of instructions to be executed as a group, including instructions for looping which give you the power of a programming language. You can use these features to construct menus of your own. Of the three, dBaseII is the most flexible, and the ability to call other 'programs' with parameter passing is very valuable.

FMS-80 combines these two approaches by providing menus for the simple things and a crude programming language for the more complex. However, unlike the other command-driven packages, the programming language is quite distinct in its syntax from the commands which execute FMS-80 procedures, and I found it quite difficult to use in anger - especially with the lack of comprehensible error messages. dBaseII is pretty unhelpful with its endless 'syntax error' messages, but FMS-80 often just stops and gives no clue as to why nothing has happened.

Relations with outside

Most packages allow you either to read files written by other programs, or to write files for other programs, or both. To do the Benchmarks I had to read an external file, and Figure 7 shows the timings for reading the file in, restructuring it to match my ' 21 field' format, and doing any necessary indexing.

Package	Cardbox	Condor	dBasell	DMS	FMS-80	Silicon Office
I calculation on 1 field on each record	NA	4 m	$6 m$	12 m 30 s	7 m 10 s	25 m for 250 records
Star rating	NA	$* * *$	$* * * *$	$* *$	$*$	NT
Totals of 3 fields over 1000 records	NA	1 m 30 s	1 m 30 s	14 m	1 hr for 250 records	
Star reting	NA	$* *$	$* * *$	$* *$	$*$	$* *$

Fig 6 Calculations on 1000 records

Package	Cardbox	Condor	dBasell	DMS	FMS-80	Silicon Office
Importing a file	23 m 30 s	13 m	13 m	39 m 17 s	16 m 40 s	4 h 45 m for 250 records
Star rating	$*$	$* * *$	$\cdots * *$	$* * *$	$*$	$*$

Stability and reliability

One of the more cheering features of these reviews has been the level of reliability of most of the packages there have been occasional glitches, but very few, and I haven't suffered any loss of data or programs during the running of the Benchmarks. In fact my complaints have been more the other way that once you have started a process going, most packages prevent you from interrupting it in any way - so if you've made a mistake you've had it. FMS-80 takes the sensible line of asking for confirmation that you want to abort.

User image

Here I'm just going to touch on a few principles, because so much of this area is a matter of taste. Firstly, you need to know whether you prefer menu or command driven systems, and, if the former, whether your needs fit sufficiently one of the packages which only has menus, like DMS and Cardbox, or whether to go for a combined approach, like Condor, dBaseII and FMS-80. Whatever you decide, there is little substitute for giving the package a thorough road test yourself before you buy - though if the price is as low as $\$ 298$, maybe you can afford to experiment any way.

Consistency is, in my view, the most important element in the user image. You need to be able to generalise the way the package works, so that learning about one part makes it easier to use another. Personally, I found Cardbox, dBaseII and Condor the easiest in that respect. Clarity and 'naturalness' is another important virtue, and another pretty subjective one, but there are some rules. For instance, I found the DMS menu - which for example uses the letter ' C ' as its prompt for Keyed access, and ' K ' for another function very confusing. I also found the Cardbox three-tier naming very confusing in an otherwise highly 'natural' package.

Finally, taking a look at the manual is always a good indicator of what the package is like. Every package should, I think, have a Tutorial Guide for beginners, a Reference Manual for experienced users and a Prompt Card for reminding people about particular command formats. The Cardbox manual is extremely good. in all those areas, I thought; personally I also like the dBaseII approach of an initial manual written by an experienced user to complement the reference manual, with lots of examples - another must. The Silicon Office manual is also, I think very good.

Conclusions

I've tried throughout to vicw each package as having a niche in the market, and to think in terms of 'horses for courses' rather than piturning for just one or two. I still think that's the right approach, and I hope this article will help you to make up your own mind about what's best for you.

FROM
 THE TECHNICAL BOOK SHOP, 114 Castlereagh Street, SYDNEY

At last - a book for astronomers who are tired of hunting for their almanacs, digging for astronomy magazines, or spending hours on laborious calculations. Celestial BASIC presents programs that rapidly complete the chores of typical astronomical computations. The programs are written in a common subset of BASIC and run on the Apple. These programs are more versatile and far more convenient than those developed for programmable calculators. By using these programs you can actually display the apparent movement of the stars, planets, the Moon, and meteor showers on the monitor. It's like having a planetarium in your own home.

This book is the Apple version of Fifty BASIC Exercises.

DOING

 BUSINESS with VISICALC \$19.95

ARTIFICIAL INTELLIGENCE

INTELIGENCE TESTS FOR COMPUTERS?

Bev Mason explains how computers can tackle a standard intelligence test by using the calculus of finite differences, including a program for System 80/TRS-80 computers.

We are all familiar with the tests used to gauge intelligence, particularly with children, where the subject is asked, among other things, to deduce the next term in a sequence of numbers. For example, the given sequence might be 1 , $4,9,16$, - or $3,5,8,12$,- In the first case the series is obviously a sequence of ascending squares, the next term being 25. In the second case, it is easily seen that the difference between successive terms increases by one at each step, and the next term is 17 .

A less obvious sequence is $-1,1,19$, $65,-$, where the next term is 151 . Even when the answer, the next term, is known the relationship is by no means obvious. In this case, each term is derived by subtracting four times the square of the term position from twice the cube of the position and adding one, ie, the third term is equal to $2 * 3 * 3 * 3$ $4 * 3 * 3+1=19$.

It is interesting to pose the question 'Can a computer be programmed to do these intelligence tests?' When one considers the virtual infinity of relationships which can exist between successive terms of a sequence it would seem that the answer must be in the negative. How can one disassemble the mental processes involved in the 'casting around' for a possible relationship, in order to write a program? Also, if a computer can be programmed to accomplish these tests when computers are undeniably not intelligent, do the tests really warrant the name 'intelligence tests'?

Before delving further into these questions, let us say at the outset that a computer can be programmed to derive the next term in a sequence, or indeed the nth term, forward or backward, and also display the relationship between the terms. The short program at the end of this discussion does just these things. We shall see some further anomalies!

A simple sequence

Let us suppose a child is given the first sequence above, ie, 1,4,9,- and is asked to write in the next term. This looks like, and is, a sequence of squares, the next term being 16. So when the child puts a 10 on his paper he gets no marks and is considered to be little better than an idiot - perhaps unjustly, as we shall see.

It is necessary to examine the question more closely. We have become so familiar with this type of test that usually only the minimum is stated. Much has to be inferred or 'understood'.

The fact that the next term in a sequence of terms is requested indicates a count. What is really being stated is

$\mathrm{y}^{-1} 49$

$\mathrm{n}=1 \begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$
and it is obvious that $\mathrm{y}=\mathrm{n}^{2}$ and the term for $n=4$ is 16 ; that for $n=5$ being 25 and so on. We could have been asked to fill in the preceding terms -ie, those corresponding to $0,-1,-2$, etc.
$\mathrm{y}-1 \begin{array}{llllll}4 & 1 & 0 & 1 & 4 & 9\end{array}$
$\mathrm{n}=-2-1 \quad 0 \quad 1 \quad 2 \quad 3$
The series extends to infinity both ways and the relationship $\mathrm{y}=\mathrm{n}^{2}$ holds true. However, n is nothing more than a count, simply marking the position of each term and there is nothing in the original question regarding the starting point of the count. In the above example y has a minimum value of 0 and it is convenient to zero the count at that point. Had the given terms been stated as $9,16,25,-$, we could have written
$y=91625--$
$n=\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$
The next terms would still be 36 and 49 but y would certainly not equal n^{2}. Common sense, or 'in telligence' would have told us to start the count with $n=3$ rather than $n=1$. But suppose that the given sequence had been a series of numbers with no immediately recognisable relationship. The zero point, in the absence of any guidance, would have to be positioned arbitrarily. Let us start a new count ' p ' one position further along:
$y=149$
$\mathrm{n}=1234$

p=0 123

Now $n=p+1$. We can see that $y=n^{2}$ therefore $\mathrm{y}-(\mathrm{p}+1)^{2}$, which simplifies into $y=1+2 p+p^{2}$. This is not as immediately obvious as $y=n^{2}$ but is just as valid. When $\mathrm{p}=3, \mathrm{y}=16$, which comes as no surprise.

The child in our example, far from being an idiot, is in fact a genius of rare talent. He had spotted that the relationship between y and p is not only by $y=1+2 p+p^{2}$ but also by $y=1+4 p^{2}-$ p^{3}. In the first case the term for $\mathrm{p}=3$ would be 16 while in the second case it would be 10 . In the absence of any guidance from the question he plumped
for the 'cleverer' answer and wrote ' 10 '. Had the question sought the preceding term, the child would have written 6 and not 0 .

It would seem then that not only can this type of intelligence test be correctly answered by an unintelligent computer, but it can also give a damaging and misleading assessment of a child's intelligence. Perhaps it would be more meaningful if, in addition to requesting the next term, the relationship used in arriving at that term should also be stated.

Before leaving this brilliant, misjudged and probably unbearable child let us not utterly condemn this intelligence test. The computer arrives at the answer by mathematical (arithmetic) means which can, as will be shown, be achieved by humans fairly simply with pencil and paper but not without (except in the easiest or trivial cases). Instead the human uses intuitive mental processes which are undoubtedly facets of intelligence which can be tested.

We shall see, with the aid of our program, that it does not matter in practice where the count is started, whether we count in ones, twos or twenty-threes, or whether the given sequence is three numbers or ten numbers long. It does not even matter if those numbers are generated randomly by our computer! We can still find a relationship between them and state the next (or for that matter the next but sixteenth) number in the sequence.

The 'other' calculus

All of the above is by way of being a lead into a small facet of a fascinating branch of mathematics known as the calculus of finite differences. ('The nonmathematical reader need not worry. The remainder of the discussion contains only arithmetic and very elementary algebra.)

The more usual infinitesimal calculus deals with relationships between continuously varying quantities. It assumes that one variable changes by an infinitesimal amount and studies the effect on related variables. An elementary application is in the calculation of maxima and minima. Thus, given a relationship such as $y=81 / 8 x+x / 2$, it can be shown that y will be at its lowest value when $x=4.5$. However, if y represents the number of hours needed for a
job to be done by x men, this method is of no great value. We cannot employ 4.5 men and there is no indication whether 4 men would be more economical than 5. Since we cannot have fractional men, nor negative men, their number x cannot be continuously variable and the methods of the infinitesimal calculus are not strictly applicable. Hence the calculus of finite differences.

Finite differences

In the 'normal' calculus briefly described above, the variable x is assumed to change by an infinitesimal amount

Dx to a value ($x+D x$). By subtracting the initial value x from the increased value ($x+D x$) we obtain the infinitesimal difference Dx. Since y depends on x it also will change, from y to $(y+D y)$, and by taking the difference we can arrive at Dy. The calculus then studies the relationship between Dx and Dy or the ratio Dx/Dy, a process known as differentiation. In the same way that the process was applied to x and y, it can be applied to the quantities Dx and Dy and to successive differences: the process is then known as successive differentia. tion.

When x can assume only integer
values the difference between one value and the next can only be finite, and is invariably taken to be unity. The difference in x is therefore 1 and the corresponding difference in y is designated by the Greek capital letter Delta. We shall use the letter D. The process is known as differencing and, if continued, becomes successive differencing.

A series of cubes

By way of an example, consider the sequence of cubes:
$y=\begin{array}{llll}0 & 1 & 8 & 2764\end{array}$
$\mathrm{x}=\begin{array}{lllll}0 & 1 & 2 & 3\end{array}$
To start the process of differencing, set the work out in tabular form:

x	y	D	D^{2}	D^{3}	D^{4}
0	0	1			
1	1		6		
2	8	7	12	6	0
3	27	19		6	
4	64	37			

$4 \quad 64$
The column headed D is obtained by subtracting each value of y from the next higher value. In a similar way, the column headed D^{2} (second difference, not $\mathrm{D}^{*} \mathrm{D}$) is obtained from the D values, and so on. The relationship between x and y is then given by the top figures in each column starting with the y column:
$y=0+1 D+6 D^{2}+6 D^{3}$
where
$\mathrm{D}=\mathrm{x} / 1$,
$D^{2}=x(x-1) /\left(1^{*} 2\right)$,
$D^{3}=x(x-1)(x-2) /(1 * 2 * 3)$,
$\mathrm{D}^{\mathrm{n}}=\mathrm{x}(\mathrm{x}-1)(\mathrm{x}-2) \cdots(\mathrm{x}-(\mathrm{n}-1)) /$
($1 * 2 * 3 \cdots+\cdots$. n).
Substituting these D values in equation (A) we get
$y=x+3 x(x-1)+x(x-1)(x-2)$
By substituting in this equation values of $x=0$ to 4 the original values of y are obtained, as are also those for $x=5$ ($y=125$), and for $x=-2(y=-8)$, etc. We know of course that in this example the equation (B) reduces to $y=x^{3}$.

The theory requires only that x should vary in equal steps. However, differencing is done on the basis that the independent variable varies by unit steps starting at zero. If x does not start at zero, or if it increases or decreases by equal amounts other than unity, it is necessary to introduce a further variable, say p, which does fulfill the necessary conditions. It is a simple matter to establish the relationship between x and p, eg:

y	5	7	12	21
x	13	20	27	34
p	0	1	2	3

y will be obtained as a function of p : $y=f(p)$
where $p=(x-13) / 7$. If the value of y is sought for (say) $x=15$ it is only necessary to calculate the value $p=2 / 7$ and substitute in equation (C).

But what use is it?

Suppose we have obtained experimentally a series of values of y in relation to values of x. If the values of x vary in equal steps we can use the method outlined above to forecast values of y for other values of x. If the values of x are not equally spaced we can plot the points, join them with a smooth curve,

The information race

In a world where the specd of convering infur mation is so vital, Ampec have the fast ounality printers to help yoca move with the wres

The Amper Mfercury 8510 provides 2 " to $9^{3} 2^{\prime \prime}$ paper wilthe and combines a primit. speed if 120 cp with hight rexollutions graphic (144×144 positions per sequanes
 for: unidirertional or bidirectional prisut and all swishes for setup selection are e placed together.

For greater capaciry and pee fonnomance at = surgrisingly low price yor caru chaowe the Ampac Mercury 15599 . This high-quadiy matrix priniter accovmamod odateens up to $15 \frac{p}{2}$. paper midth and cant prime

 Thmongin the Amprec Memcury matrix primar ramye.

and read off y at standard intervals. The method will then forecast or extrapolate possible y values outside the graph. But remember, we get only a forecast, not a certainty.

Suppose our first four results were 0 , 1,8 and 27 as in the cube series above. If these were RUN in the program, the computer would correctly forecast 64 and 125 for $\mathrm{x}=4$ and 5 respectively and print the relationship as $y=x^{3}$. However, suppose the value of y for $x=4$ were subsequently determined experimentally as 40 and not 64 . On feeding the computer the sequence $0,1,8,27,40$ it will reply correctly with $\mathrm{y}=5$ for $\mathrm{x}=5$ instead of $y=125$. The relationship will now be printed as $y=6 x-11 x^{2}+7 x^{3}-x^{4}$. It can easily be seen that the sequence $0,1,8,27$ can be followed by an infinity of different numbers of which 64 and 40 are but two.

Our child (I thought we had lost him) could have put any number he liked, positive or negative, after the sequence in his intelligence test, and proved that it was logically related to the earlier numbers.

In the 'conventional' calculus, the
opposite operation to differentiation is integration. One method of finding the integral of a mathematical expression is to plot the graph of the equation and measure, or calculate, the area between the curve and the x axis; Simpson's Rule is a method for calculating irregular areas. It is applied by dividing the area into equally spaced strips, measuring or calculating the length of each strip, and applying a simple formula. It can be programmed into home computers to perform the function of integration. The division of the area into finite steps or strips suggests the calculus of finite differences, and in fact Simpson's Rule and similar methods are derived from that calculus. However, the derivation of Simpson's Rule is too complex to be described here, but its application in computers to calculate definite integrals is simple.

The universe operates in a continuous and smooth fashion - eg, time and planetary motion - and the infinitesimal calculus has been universally applied. However, there are those who maintain that the calculus of finite differences offers a more practical picture since the world operates in a digital manner: a view which should be popular with computer people who can more easily appreciate things operating a 'bit' at a time. It is obvious that the number of men needed to do a job, or

```
10 INPUT "HOW MANY VALUES ARE KNOWN":V1:VmV1-1
20 INPUT "LOWEST VALUE OF X"; X (0)
30 INPUT "'CORRESPONDING VALUE OF Y'; Y(0)
40 FOR N = 1 to V
50 INPUT "NEXT VALUE OF X"; X(N)
60 INPUT "NEXT VALUE OF Y"; Y(N): NEXT N
70 INPUT "FOR WHICH VALUE OF X IS Y REQUIRED"; X
8 0 ~ D X ~ = ~ X ~ ( 1 ) ~ - ~ X ( 0 ) ~
90 IF X(V) >X(0) + V*DX PRINT "INCORRECT DATA"": GOTO 10
100 IF X - INT(X) }0\mathrm{ PRINT "INCORRECT DATA": GOTO 10
120 D(0) - Y (0): N=1
130 IFN=V +1 GOTO 180
140FOR N1=0 TO V -N
150 Y(N1) = Y(N1 + 1) - Y(N1): NEXT N1
160 D (N)= Y(0)
170 N = N + 1:GOTO 130
180 P=(X - X (0))/DX
210 Y = D(0)
220 N2=1
230 Q = 1
240 FOR N1 = 1 TOV
250 N2 = N 2 *N1
260 Q = Q*(P-N1 + 1)
270 Y = Y + D(N1)*Q/N2: NEXT N1
280 CLS: PRINT:PRINT:PRINT:PRINT "WHEN Xm"X"Y="Y
290 REM 'EVALUATE ALGEBRAIC RELATIONSHIP'
300 C(1,0)=0:C(1,1)=1
310 FOR N=1 TO V
320 C(N,N+1)= 0; NEXT N
330 FOR N=2TOV
340 FOR R=1 TO N
350 C(N,R)= C(N-1,R-1)-(N-1)*C(N-1,R)
360 NEXT R: NEXT N
370 N2=1: E (0) - D(0)
3 8 0 ~ F O R ~ N = 1 ~ T O ~ V ~
390 N3 - N2
400 FOR N1 = NTO V
410E(N)=E(N)+D(N1)*C(N1,N)/N3
420 N3 = N3** N1 + 1): NEXT N1
430 N2 = N2* (N+1): NEXT N
440 PRINT "Y m";
450 IF E (0) = 0 GO'TO 470
460 PRINT E(0);
470 IF E (1)<0 GOTO 500
480 IF E(1) = 0 GOTO 510
490 PRINT "+" E(1) "P";:GOTO 510
500 PRINT E(1) "P";: GÖTO 510
510 FOR N = 2 TO V
5 2 0 ~ I F ~ E ( N ) < 0 ~ G O T O ~ 5 5 0 ~
530 IF E(N) = 0 GOTO 560
540 PRINT"*+" E(N) "P["N;: GOTO 560
550 PRINT E(N) "P["N;
560 NEXT N
560 NEXT N ( }570\mathrm{ PRINT:PRINT:PRINT '"WHERE P = (X-" X (0)")/"DX
```

Listing
the number of bricks required to build a house, must be integers. It is perhaps not so obvious that the 'smooth' speed of a car is related to the integer number of engine firing strokes per second: one cannot have a fraction of an explosion. Even the classic problem of water running into and out of a bath could be stated in terms of whole numbers of molecules.

When is a random number not?

When I asked my computer to generate four random numbers between 1 and 20 it replied with $8,2,5,17$. I set them as a series:
$y=\begin{array}{llll}8 & 2 & 5 & 17\end{array}$
$\mathrm{x}=\begin{array}{llll}0 & 1 & 2\end{array}$
and fed them into the program. The computer showed that the numbers are related to the expression $y=8-10.5 x+$ $4.5 x^{2}$ and that the next number in the 'series' would be 38 !

The program

The program is written in Microsoft Basic for use with the Z80 based System 80 computer. It occupies about 1.2 k of memory, which could be reduced considerably by compression. In the absence of DIMension statements the size of the arrays $D(N), E(N), X(N)$, $\mathrm{Y}(\mathrm{N})$ is automatically set to 10 and that of the array $\mathrm{C}(\mathrm{N}, \mathrm{M})$ to $10 * 10$. The program will therefore accept a sequence of up to ten numbers, as printed, and will require a further 0.8 k of memory to RUN. This requirement can be reduced considerably by restricting the sizes of the sequence and of the arrays by including correspondingly suitable DIMension statements.

Lines 10-70 are self-explanatory

Line 80 determines the interval of finite differences between the x values.
Lines 120-170 calculate the differences between the successive y values, setting the differences as a new series of y values and repeating the process. The intial values of y and of the successive difference series are set into the array $D(0)-D(N)$.
Line 180 establishes where x falls on the p scale, zero p falling on the first y value.
Lines 210-270 evaluate the successive terms of the relationship $y=f(x)$ and add them together to give the value of y.

As described above, the program deduces and evaluates expressions such as: $y=x+6 x(x-1) / 1 * 2)+6 x(x-1)(x-2) /$ ($1 * 2 * 3$)

This expression is equivalent to the much more convenient and understandable form $y=x^{3}$. In writing a program to convert from one form to the other it is necessary to overcome the computer's inbuilt tendency to substitute numerical values for algebraic symbols. After all, the computer was designed to do arithmetic and not algebra.

Lines $300-560$ are therefore a rather tedious way of reducing the first untidy algebraic forms into ascending power forms, and printing the result. If preferred, these lines could be replaced with a very much shorter version to print the relationship in the original untidy form. Note that System 80 language PI3 means P cubed.

Dear Reader.
We don't sell the vic-20 computer but we THINK IT IS THE BEST MACHINE FOR FAMILIES THAT WANT to learn about the new technology while having a lot OF FUN.

The VIC is a powerful computer. We have NOW USED IT TO PRODUCE EDUCATIONAL PROGRAMS THAT MAKE VIC MUCH MORE USEFUL AT HOME OR SCHOOL. ASK YOUR VIC RETAILER TO SHOW YOU VICEDUCATION. COMPARE THE COMPUTER and the ViCeducation programs with the rest of the MARKET.

VIC + VICeducation = the best available.
You pay far less and get much more. Remember when YOU BUY A COMPUTER TO CHECK THE PROGRAMS AVAILABLE. CHECK THE REST (WHERE IT EXISTS) AGAINST OUR FEATURES:

- MATHS AND LANGUAGE DEVELOPMENT FROM Kindergarten to teenage;
- programs made in Australia with Australian

SPELLING AND TEACHING;
-PROGRAMS WITH COLOUR, SOUND AND GRAPHICS, that are fun to use, that kids want to play over and over:

- Programs that cost about \$14.

MARgaret Gray and Dennis Argall
P.S. If you can't get to a VIC retailer order from us BY PHONE DAY OR NIGHT. A THIRTY SECOND MESSAGE TO OUR ANSWERING MACHINE AFTER 9pM WILL COST NO MORE THAN postage from anywhere in Australia. Quickly state your NAME, TELEPHONE NUMBER, ADDRESS,BANKCARD NUMBER AND EXPIRY DATE, THEN ITEM NUMBERS FROM THIS LIST.
PRICE $\$ 14.40$ per item including postage.
M-01 Young Maths - ages 5 to 10
M-02 Multiplication and series - 6 to teens
M-03 Addition,subtraction and numberline - 6 to teens
M-04 Addition and subtraction tutor - Follows M-03 on
M-05 Division tutor - FOllows M-02
M-06 Multiplication tutor -follows M-02
L-01 Spellstart 1 * Ages 6 To 9
L-02 Spellstart 2 ONE thousand WORDS In programs
L-03 Spellstart 3 FOR VOCABuLARY AND SPELLING
L-04 Spellstart 4 development.
Telephone (O62) 310494 or write to

VICeducation

 PORTABLE

Dick Pountain Benchtests a remarkable new portable computer from one of Japan's most famous manufacturers

I said my piece on the future of handheld computers in last month's review of the Hewlett-Packard HP75C and so will not take up space repeating it here. Suffice to say that the subject of this review is the second general purpose fully portable microcomputer to reach the Australian market; by general purpose I mean that it has the speed, memory and other facilities to take on
tasks hitherto reserved for mainspowered machines and is not limited to mathematically oriented problems. The HX-20 is also the first computer to be seen here from Epson, the Japanese firm which has achieved a remarkable dominance of the micro printer market in the space of three years. Epson, which is owned by the giant Seiko watch firm, has sold com-

puters in Japan for some time but this is the first to be exported, and it will be followed soon by a series of desk-top CP/M machines.

Hardware

As delivered, the HX-20 is a selfcontained battery-operated computer with 16 k of non-volatile memory, a 32 k

Basic in ROM and built in four-line display and printer.

The outward presentation of the HX-20 is very neat and very Japanese. The case is moulded in that metallised silver plastic which has become a trademark of Japanese consumer electrical goods; the moulding is robust and intricate with many embossed legends and removable panels. All the screws which hold the assembly together go into moulded-in brass collets rather than naked plastic.

The case is exactly A4 sized (the size of this page) and the depth tapers from an inch and a half at the front to two inches at the rear. As you will quickly grasp, this is not a pocket-sized machine nor, at 1.6 kg , is it even 'hand-held' in the traditional sense; you would need to support it in a crooked arm. Epson is deliberately calling it 'portable' not 'hand-held', but 1 suspect that 'lapheld' is the way most people will use it in the absence of a table; it will, however, slip into an ordinary briefcase without trouble

The display is a 20 -character by 4-line LCD unit (E.pson leads the world
in production of liquid crystal displays) which has no calculator type annunciators; it is treated exactly like a VDU screen of 120×32 dots. This screen is in fact only a 'window' onto a virtual screen whose size is user definable up to 255 characters by 255 lines and so can be scrolled in all four directions. A most unusual feature of the display is that the angle of view may be changed by adjusting a control on the side of the case; you sit in the position in which you want to use the machine and turn the knob until maximum contrast is achieved. Most previous LCDs can only really be viewed from square-on.

The keyboard is of standard ASCII layoul and is not just good for a portable computer but good, fullstop. The keys are of low cushion shaped profile with recessed tops and have full-sized typewriter pitch, travel and a satisfying feel and feedback. The keyboard is fully debounced and appears to have a type-ahead buffer, which is useful as liquid crystal displays have a noticeable lag compared to a VDU. All the inain keys have autorepeat. TAB.("TRL and CAPS LOCK
keys are provided, though the latter regrettably has no indicator to show that it's engaged. There is no numeric keypad but a shift key called NUM will turn a block of the main board into one for data entry. Another shift key called GRPH produces block graphics and symbols. Editing keys include CLR/HOME, INS/DEL and four-way cursor movement, but irritatingly the latter is done by two keys, cursor up and down being shifted. Along the top of the main keyboard are five programmable function keys, the PAUSE and BREAK keys and a key called MENU of which more below. In short this is a keyboard, for the first time on a portable, upon which I'd be happy to type all day. My only real criticisin is that the keys are mounted directly onto a PCB which bends slightly under pressure (like the early Acorn Atoms); it would feel more robust if more ribs were cast into the case bottom to support it.

To the left of the display sits the built-in miniature dot-matrix printer. This unit uses rolls of plain paper and ribbon cartridges which are perfect

EPSON HX2O
Lilliputian copies of the MX-80 ones; the review machine had purple ink in it. The $21 / 4$ in paper accommodates 24 characters on a line and it can print the whole HX-20 set including the block graphics characters, as well as performing dot graphics. Operation is either under program control using LPRINT or manual, screen dumps being possible using CTRL and one of the function keys. The printer has its own on/off switch so that
programs which have printer output can be debugged without wasting paper; it also has a manual linefeed button.

Printing speed is not fast at around 40 lines/minute but is comparable to other units of this size, while the print quality is much better than electrostatic 'silver paper' printers. Paper rolls are spindle-less and merely drop into a cavity under a hinged trapdoor, while changing cartridges is a cinch. The plain paper rolls are a standard size and so many office calculator rolls should work. They think of everything.

A third type of output is revealed by

a grille just below the display. This conceals a piezoelectric beeper which is programmable for pitch and duration.

Around the sides of the case are various sockets for connecting peripherals. The back panel holds two RS232C ports which have different DIN plug connectors. One is for communication with terminals, printers, other computers and modems at up to 4800 baud and has an 8-pin DIN socket. The other is for communicating with a TV or monitor via an adaptor, or to disk drives; it has a 5 -pin DIN socket and a maximum transfer rate of 38,400 baud. At the left side is a parallel connector for the expansion RAM box, while at the right are mini-jack sockets for an external cassette recorder with remote control, and a bar-code reader. Finally, a socket next to the RS232 port allows an AC/DC power supply to be plugged in to recharge the NiCad batteries. These have a capacity of around 50 hours (they didn't need charging during this test) and take eight hours to charge; the computer can be used on the mains unit while they are charging but Epson warns not to use it this way once they are recharged as overcharging can shorten their life. I was rather suprised that the HX-20 doesn't auto-power down after a set interval as do most other batteryoperated machines; best remember to switch it off.

The on/off switch is at the right hand side, as is the reset button; the latter is required only when a run-away program does not respond to the BREAK key or the on/off switch, which is only likely with machine-code programs. It does not perform a true cold start (which is done through software) and preserves all memory contents.

On a standard HX-20 the area to the right of the display is blank. It contains a dummy module which can be removed (using a very ingenious lever at the back) and replaced by either the optional microcassette drive or by ROM modules containing software. None of the latter were available for the test but the cassette drive was. This is a digital, not audio, device and uses standard microcassettes. It reads and writes at a fast 1300 baud and gets around 50 k onto a 30 min tape. Although it has a tape speed of $2.4 \mathrm{~cm} / \mathrm{s}$, which is the same as most pocket dictaphone recorders, Epson does not recommend swapping tapes between recorders. A really nice feature is the software tape counter which allows fast winding to the exact location of a program before loading; the tape position at any time can be read by a program. Using this feature cuts the time wasted searching tapes enormously and approaches the convenience of disk. The tape drive can be operated manually as well as under program control by pressing CTRL and the first function key. This turns all the function keys into tape deck controls, including one for zeroing the tape counter (which is displayed on the screen in this mode).

The ROM packs are unusual in that that they are accessed by a high-speed serial link and are treated, like other serial mass-storage, as a sequence of files rather than as part of the memory-map. They will be available in sizes from 8 to 32k.

Getting inside the case is quite easy and reveals some surpises. It is no sur-
prise that the manufacturing techniques are 'state-of-the-art'. The design is highly modular (the printer comes away as a sub-unit by undoing two screws) and uses two circuit boards, one for the logic and one for the keyboard switches. These are interleaved with sheets of a curious flexible metallised card which doubles as insulation and RF shielding. All intercard connections are by FCPs (flexible printed connectors) which are held by ingenious sliding grippers rather than those precarious sockets used on some units; they can be refitted over and again without damage. An interesting little anecdote; after I took the HX-20 to pieces for that 'squashed hedgehog' photograph, I reassembled it and the RAM contents were still intact! The 16 k of on-board CMOS memory is in eight 16k chips while the ROM is in four 64 kbit chips which are socketed; there is a spare socket for 8 k of ROM expansion.

The architecture of the HX-20 is unorthodox, to say the least. It has two CPUs, which are related as master and slave. They are both 6301 CMOS devices of Epson's own manufacture and have 4 k of mask ROM and 128 bytes of RAM on the chip; they are reputed to be code-compatible with the Motorola 6800 . The master CPU controls memory, keyboard, display, clock and bar-code reader using the external ROM while the slave CPU controls the printer, cassette recorders, RS232 and high-speed serial ports and low-battery power-off function using its on-chip ROM. Most unusually, the two CPUs talk to each other by the 38,400 baud serial link rather than parallel. One consequence of this is that the memory map is, to say the least, complicated.

There are plenty of other oddities which space prevents me from describing; one I must mention is that both processors go into a 'sleep' state to save power when not being used and must be woken up when required. A glance at the Benchmark timings will show that they are by no means fast (50 percent slower than the HP75C) but are no disgrace.

The overall impression given by the HX-20 hardware is that here is a level of professionalism in design and manufacture which would give me nightmares were I an occidental computer manufacturer.

Firmware

The HX-20 operating system sits in ROM along with the Basic. Since all file handling for the cassette drives is done through Basic the operating system has very little to do with the user; it is responsible for the Menu selection function, managing the partitioned memory, cold and warm starting Basic (which includes setting the system clock) and responding to requests for manual control of the printer and cassette drive. Entry of machine code programs is done through a separate monitor which runs under the Menu function.

When you switch on the HX- 20 the first reponse is always to present the menu on the display. The very first time you do it, it reads:
CTRL @ Initialize
1 MONITOR
2 BASIC

What this means is that to perform a cold start (which clears all memory contents and allows setting of the system clock) you must press CTRL @. Cold start also sets default values for user RAM size, amount of RAM file space and assigns 10 Basic keywords to the function keys. If you do this you will be prompted for the time and date; once you've entered these you will be returned to the above menu. You now have a choice of pressing the 2 key to enter Basic or 1 to enter the monitor.

Later on, when you have written some programs, up to five of these may be added to the menu so that they can be run immediately upon switching on the machine. The user RAM is divided into five partitions, called P1-P5, and each one may contain a separate program (or none). The partitioning is totally transparent to the user and you will only know it's happening if the total size of all your programs exceeds the total user RAM.

Unlike the Sharp and HP machines, there is no calculation mode; to perform calculations you must enter Basic and use PRINT $2+2$, etc. Time and date can be displayed by pressing SHIFT and function key 1 from Basic but there is as far as I can discover no alarm function nor any of the sophisticated calendar functions of the HP75C; you can of course write your own alarm routine using the beeper.

Basic can be warm-started at any time (you must BREAK out of any running program) by pressing the Menu key; this returns the menu to the screen, and resets the default values for various system parameters such as the size of the screen but doesn't wipe out your programs. When you re-enter Basic, though, it is al ways into partition P1 no matter what you were in before warm start. In case you're wondering, no, you don't have to warm start to change program areas; that can be done from within Basic or even from within a program by the LOGIN x command which puts you into Px_{x}.

The monitor is quite a powerful program which has the ability to set breakpoints and change the contents of processor registers as well as the usual functions of dumping and changing blocks of memory and loading and saving binary files to tape. Coupled with the Basic MEMSET command which allows you to reserve space below Basic for machine code programs (the manual continually refers to them as "Assembly Language' programs) this would be a very useful facility if only the instruction set were to be found anywhere in the documentation, which it isn't. If it is true that the processors are 6800 compatible this may not be a problem; I didn't have the time or the 6800 experience to find out.

One very neat feature of the monitor I should mention is the K command which lets you set up a 'boot' program which is automatically executed when power is switched on; if you wish it could be Basic itself so that you bypass the menu.

The amount of memory available to the user on the HX-20 is a whole story in itself. It depends not only on the setting of MEMSET but on space allocated for RAM files (see later) for strings, and on the size of the screen which you've defined. Of the 16 k stan-

Master CPU Memory Map
dard memory, the bottom 2624 bytes are used by the system (so this is the minimum value for MEMSET) and the most which can be allocated to Basic programs is 13,398 by tes with a 20×4 screen and no string or RAM file space. On warm start the default memory size is 12,891 bytes; adding the expansion memory pack would give 29,275 free bytes so the HX's advantage over the HP785C is not quite so great as it first appears in this respect.

Although the business of controlling screen sizes and graphics modes is done from Basic I propose to deal with it here since the default values are set by the operating system.

There are two different screens available on the HX-20; a text screen and a dot-addressable graphics screen. There are two devices on which these screens can be displayed, namely the built-in LCD and an external TV or monitor. The text screen can be a 'virtual screen' bigger than the device, so that the physical device is a moveable window onto it. On the LCD both screens can be displayed superimposed on one another; on the TV you can show only one or the other but the graphics can be in colour. When you have picked the bones out of that lot you will realise that there is much to learn about the HX-20 screen, and I don't propose to teach you all of it here.

The size of the text screen is set by the WIDTH statement; for the LCD it can be up to 255×255 depending on available memory. For the external TV the limit is 40×37, of which the actual screen shows 32×6 lines. Since the TV adaptor was not available for test I'll concentrate on the LCD. When the cursor reaches the edge of the actual screen it 'drags' the window with it to the edge of the virtual screen. Alternatively you can move the window itself using control characters, in which case the cursor stays where it is. The cursor or the window can be sent to any point on th virtual screen using LOCATE or LOCATES x, y. It is possible to define margins round the actual screen so that that cursor starts to 'drag' the window before it reaches the edge; this makes life much easier as you can see if you're going to overwrite anything so the system defaults to a margin of four characters unless you tamper with it. In practice you soon get used to moving this window in two dimensions over a bigger screen and it becomes second nature. In Basic an excellent full screen editor is provided (with insertion and

EPSON HX2O
deletion) so if you define a big enough virtual screen you can scroll upward through a listing or re-use commands previously entered. In doing this it pays to be careful that nothing else is lurking on the same line but off the screen!

The graphics screen is 120×32 dots for the LCD and 128×96 mono or 128×64 in four colours for the TV. If you use colour, however, a bizarre addressing mode prevails where there are 64 physical dots vertically but 96 addresses, so that either 0,0 or 0,1 will light the dot at 0,0 but only 0,2 will light 0,2 and so on alternately. Personally I never cared much for colour anyway, sniff.

Software

Epson's Basic (originally called MFBasic but now EBasic) is a pretty substantial implementation of the language. It is much more orthodox and Microsoft-like than HP's 75C Basic but lacks the latter's modular programming facilities.

To write a program, select Basic from the menu and then either write it in P1 which comes up automatically or LOGIN to one of the other areas. AUTO line numbering, DELETE and RENUMber are all provided. To copy a program to another area use PCOPY x. If you wish your program to be added to the menu then TITLE it and it will automatically become the next item; the menu number is not necessarily the same as the P number but making a menu selection puts you into the right partition anyway. A program with a title cannot be NEWed or over-written until you give it a null title with TITLE "", which affords very valuable protection. STAT gives the title and size of a program and STAT ALL gives this for the whole lot and throws in the value of MEMSET and the RAMFILE space; a nice touch for homesick CP / M users. The function keys are, easily set up by 'KEY number, "string" ' and the assignments can be inspected with KEY LIST or KEY LLIST for hard copy.

Error messages are rather more terse than I would like, but at least they have some mnemonic value and are not mere numbers; eg, SN ERROR (syntax), PP ERROR (protected program). There are over 60 of them including the intriguing 'Unprintable error'!

The HX can handle decimal, hex and, surprisingly, octal integers plus single and double precision (16 digit) reals. Variable names are up to 255 chars with a whacking 16 significant which should be enough even for the purist. Full type conversion functions are provided, type being indicated by the suffixes $\%,!$, \# and $\$$. Arrays may have more than two dimensions.

The Boolean operators are remarkable for the inclusion of IMP(implication) and EQV (equivalence) in addition to the normal AND, OR, NOT and XOR.

Most of the rest is standard Microsoft, a single line DEF FN and IF. . . THEN. . . ELSE and the normal string functions including INSTR. INPUT is supplemented by LINE INPUT, which takes 255 characters without delimiters, and the unusual

INPUT\$ which reads a specified number of characters from the keyboard or a file and waits until they're all delivered. A powerful PRINT USING is supported to format numeric output. Error trapping by ON ERROR GOTO/GOSUB is included, too.

File handling is fairly orthodox, with a couple of nice flourishes such as LOF, a function which returns the byte length of an open file. The latest thinking on device independence has been implemented; files have a 'descriptor' in the format 'devicename: filename' (filename optional) and can be directed to another device by changing the name. Recognised devices are keyboard, screen, tapes, ROM packs, RS232 ports, and internal printer; floppy drives are not recognised as a new Disk Basic will be required to run them.

Program files may be saved in two forms - compressed binary or ASCII. All the files so far mentioned are sequential. Random files are supported in the form of RAM files. These sit in memory and can be written and read randomly by a program from any of the partitions as they occupy their own protected area. This area is set aside by issuing a CLEAR statement; as well as clearing numeric variables this can take parameters which set the amount of string and RAM file storage. Once allocated, individual files can be defined in this area using DEFFIL, which sets the record length and the offset in bytes from the beginning of the RAM file area of the first record. Data of any type may be mixed in one record. As RAM files do not have names it's up to you to keep track of what starts where; there are no absolute addresses to remember, only offsets. They are very handy for permanently storing look-up tables of much used constants or conversion factors as a means of passing parameters between programs.

Finally, while on the subject of storage, the cassette control statements are exceptional. TAPCNT is a system variable which keeps the tape counter reading. WIND xxx fast winds the tape to any given place $x x x$ and MOTOR switches on or off an external cassette recorder. FILES will give a directory of the names and types of files on a tape, or any other storage device including a ROM pack.

The graphics commands are confined to PSET to plot a point, PRESET to unplot it and LINE to draw lines, plus a function POINT which tells if a given point is lit.

All considered, this is a very powerful Basic, biased if anything towards
business use. It will be immediately familiar to programmers used to MBASIC, which is no bad thing.

No applications software was supplied with the machine, which was one of the first final production models with export ROMs in this country.

Documentation

I was supplied with a Xeroxed copy of what looks like a fairly finalised user's manual and the technical manual. Both are excellent, somewhat to my disappointment as I have relied for several years on Japanese manuals to inject a little humour into otherwise turgid Benchtests. These really are different. For a start they're in English with only the very occasional hint they've been translated.

The user's manual starts with a straightforward and comprehensible account of the machine's features and how to get it running. This leads on to the main section on EBasic which is laid out in the same format as Microsoft's MBasic manual and is clear and comprehensive. There follows a good chapter on machine code programming (apart from the aforementioned absence of instruction set) and file handling. It ends with numerous appendices of character codes, control codes, error messages and an index by function of the Basic reserved words and functions. There is no alphabetic index to the whole manual, though.

The technical manual is remarkably detailed, going through all the hardware down to the signal and timing level and ending with full maintenance and repair instructions which are intended for the dealer and repair shop. If you're a hardware junkie make sure you get this manual as well as the user one.

To summarise, a quantum leap forward from the stereotype of inscrutable Japanese documentation.

Expansion

There is room for 8 k more of ROM on the main board, which may be used for alternative language character sets. An expansion module which fits externally onto the left side of the machine contains 16 k of RAM and a further 16 k ROM.

ROM modules which fit in the place of the microcassette drive are somewhat different from ordinary ROM in that they are treated as file-oriented readonly mass storage.

A TV/monitor adaptor should be available by the time of the launch in February, and a bar code reader for stock control applications is also pro-

Technical data	
Processors	Twin 6301 (CMOS) 0.6 MHz
Dimensions	${ }^{290} \mathrm{~mm} \times 215.5 \mathrm{~mm} \mathrm{\times 44mm}$
Weight	${ }_{\text {Pemg }}^{\text {Rechargeable Ni/Cad cells } 4.5}$
RAM	110 k CMOS stand ard. 32 kexpanded
ROM	
${ }^{\text {Display }}$ Keyboard	
Printer	
	line.
Ports	RS232C up to 4800 baud, High speed serial up to
Language	${ }_{\text {bebasic }}$

NOW AVAILABLE FROM CASE THE STAR 80 cps PRINTER FOR UNDER $\$ 500$

The CASE STAR

- 80 cps Bi-directional, Logic Seeking.
- Tractor \& Friction Feed standard.
- 80, 96, or 132 Characters/Line.
- Double width \& Graphics Characters.
- Programmable Line Spacing.
- Vertical Forms Control.
- Parallel \& Serial Interfaces ex stock.

For full details on the STAR and other CASE products phone Sydney (02)438 2400, Melbourne (03)233 6255, Adelaide (08)27I 4299, Brisbane (07) 3762830, Canberra (062)51 3711, Hobart (002) 344522,
Perth (09) 325 I 344, or post the coupon.

EPSON HX2O

mised which will be HP compatible.
The RS232 interface can be used to attach a full-sized printer such as Epson's own MX-100 for which the protocols are built-in (though the interface is programmable to accommodate other devices). An acoustic coupler, the CX-20 will be available next year though Warburton Franki, Epson's Australian distributor, assures us that most commonly available couplers would work with the HX-20 making it a powerful roving terminal for sales teams and the like.

Floppy disk drives are to be produced; twin $51 / 4 \mathrm{in}$ drives with 328 k per drive. They will be controlled by the TV adaptor, but don't expect to see them before 1983

An obvious question given the excellent keyboard is 'Can I wordprocess on it?' The answer is probably. Warburton Franki are talking to both Epson USA and UK who are both developing applications software. More than that I cannot tell you.

Other software products which are in preparation include a spreadsheet program called 'Epsoncalc', a Sales Order package which takes orders, gives receipts and can communicate to the base computer, and 'Personal Office', which is a calendar/diary/alarm program with card file style data storage facilities; this should close the gap with the HP75C referred to above

Conclusion

I feel rather shell shocked having reviewed the HX-20 so soon after the excellent HP75C. Both machines advance the art of portable computing beyond recognition - if in subtly different directions. The Epson is rather more like a conventional desk-top micro in its functioning than the HP is. It is aimed either at the business user who will buy ready made software on tape or in ROM packs, or at the ownerprogrammer who will write most of his/ her own software. There is not much you can do with the naked machine unlike the HP which has lots of 'supercalculator' firmware for the busy executive. On the other hand, the Epson is at least the equal of the HP in power and leaves it standing in the quality of its keyboard and the convenience of its

Benchmark timings

BM1	2.7
BM2	15.3
BM3	3.1
BM4	32.8
BM5	35.3
BM6	59.1
BM7	100.6
BM8 *	133.3

All timings in seconds. For a full explanation of Benchmarks see APC Vol 3, No 9, Sept. '82.

* Nolc: BM8 now counts 1000 loops.
built-in printer and tape drive. It is also cheaper.

When a decent word processing package can be had for it then writing on the train or aeroplane can become an affordable reality at last, even if you do have to take it home to print it. For journalists and for business letters 32 k is quite enough memory for away-frombase use to be a practical proposition.

For tasks such as stock-control, sports result calculations, and sales records as well as general engineering and scientific work it is an excellent tool and an impressively well made one at that. Given Epson's market penetration (how many computer shops do you know who don't sell Epson printers) I expect to see a lot of them about in 12 months' time and this also bodes well for a supply of third party software; from previous experience of Japanese firms I wouldn't expect a lot of software support from the manufacturer but Epson does seem to be trying to do things differently. The choice of a 6800 look-alike chip is rather unfortunate as it will definitely hinder the conversion of many existing programs but I expect it to open up whole new areas of applications where this is not so relevant

I wouldn't mind finding one in my stocking, any way

Prices

Epson HX-20 (including travelling case)
$\$ 1296.00$
Microcassette Drive
Expansion Memory Unit
ROM cartridges
$\$ 214.00$
TV/Monitor Adapter
Barcode Reader
Acoustic Coupler CX-20
Rolls of printed paper
Ribbon cartridge
A/C Adaptor
$\$ 74.00$

All prices include Sales Tax.

FROM

THE EDUCATION SPECIALISTS
250 Parramatta Rd., Annandale, N.S.W. Phone: (02) 569-5188.

THERE'S NOTHING LIKE GETTING YOUR HANDS ONIT!

Australian Personal Computer is the largest-selling microcomputer magazine in Australia. We must be doing something right. But even APC has its limitations.
Touch the keys in the picture. Nothing happens, right? There just isn't any substitute for hands-on experience of new and exciting machinery and software.

The 1st Australian Personal Computer Show next March will be the largest and most exciting microcomputing exhibition ever held in Australia. Almost every big name (and a lot of smaller ones) in the microcomputer industry will be represented. Features will include the very latest software and add-ons for popular machines, computer chess competitions and an opportunity for you to challenge a micro to a game of Scrabble.
From the business angle there's more demonstration machines and business software than you could get to see in a year at your own office. But you needn't risk divorce to evaluate them ... your wife (or husband!) and the kids can be looking at the vast array of home and educational micros on one of the other stands.

In short, The 1st Australian Personal Computer Show will have something for everyone to get their hands on. Can you really afford not to be there.

The 1st Australian
Personal
ComputerShow
Centrepoint Sydney 10-12 March 1983

\qquad

For further visitor and exhibitor information about The 1st Australian Personal Computer Show, please contact Rachel Tetley, Australian Exhibition Services Pty Ltd, 1250 Malvern Road, Malvern, Victoria 3144. Telephone: (03) 201208. Telex: AA 39329.

PC-1211 COMPLEX ARITHMETIC

The new HP-15C, reviewed in this column in September, has built-in complex number arithmetic - probably for the first time on a programmable. It is quite possible, however, to program this feature on most machines, and the following is a particularly nice implementation for the Sharp PC1211 by John Kerr.
Dick Pountain
This program converts the 1211 into a calculator operating on complex numbers. It is run in the DEF mode. 'shft Z' creates storage space for up to 18 complex variables, labelled ' A ' through ' R '. The assignment statements allowed have the general form
variable name (A. . R) shft =operand enter operator enter operand enter operator enter operand enter enter
Operands are of two types. A type 1 operand is a variable name, which may be preceded by either or both of the monadic operators ' \rightarrow ' and ' C '. These denote complex negation and conjugate respectively; eg, '-CF' represents minus the conjugate of F. A type 2 operand is a numerical input. Examples: 3-j4 is entered as '3 shft J-4'; $5 L-53^{\circ}$ is entered as ' 5 shft K--53' (although the latter assumes DEGREE mode, the program will operate in any angle mode). Legal dyadic operators are ' + ', ',' ' $*$ ', $' ~\rangle$ ' and ' \wedge '. The first four of these represent complex addition, subtraction, multiplication and division. The fifth raises a complex number to a real power; it is followed by a special type of operand (a REAL operand), which is any arithmetic expression. Dyadic operators all have equal priority, and evaluation proceeds from left to right (there is no bracketing facility). Monadic operators have a higher priority and must not be followed by 'enter'.

Several types of prompt are used. These are:
$>$ Begin entry of calculation
\# For entry of an operand
? For entry of an operator, or final 'enter'
J Rectangular notation; entry of second component
$<$ Polar notation; entry of second component
The calculation buffer has 32 stages. Type 1 operands and REAL operands occupy one stage; type 2 operands require two, as does the final operand in a calculation, regardless of its type. If the calculation is not terminated (by final 'enter') before this buffer is saturated, the computer automatically suspends input and calculates and displays an intermediate result. To continue the calculation, press 'enter' then input the next operator symbol. This continuation is also permitted when the partial result has been ordered manually.

Memory recall uses the defined program ' L ' (for 'look'). For example, ' F shft L ' brings the content of memory F to the display. Results are always expressed in rectangular notation, but a result displayed by a memory recall or assignment statement can be converted to polar form by 'shft SPC' (the internal representation of the number is unchanged by this operation). Press 'enter' to return to rectangular form.

Program ' L ' also provides the effect of assignment operators as found in Algol: ' F shft L enter / enter G enter enter' performs the assignment $\mathrm{F}=\mathrm{F} / \mathrm{G}$ and, in general, ' F shft L enter' is equivalent to ' F shft $=F$ enter'.

Any of the 18 labels A. . . R may be used in the ordinary way, during calculations, to store REAL numbers. The corresponding complex space will no longer be accessible by its label, but its numerical pointer can be used instead; these pointers are 27 for A, 29 for B, etc. Thus ' 37 shft L', for example, will bring the value of complex memory F ' to the display. The calculation register (memories X and Y) is referred to by pointer value 24 . On the LHS of an assignment statement it is used to display a calculation result without a destination; while on the RHS it can be used as any other type 1 operand, and has the interpretation 'result so far' eg, used after '* enter', it squares the current value in the calculation register. NB: memory C should not be used for REAL storage as the operation of complex conjugation would be lost.

Four operations involving REAL storage are:
Assign the real part of F to $R: \quad R=A(F)$ enter
Assign the imaginary part to $\mathrm{Q}: \mathrm{Q}=\mathrm{A}(\mathrm{F}+1)$ enter
Assign the modulus of F to M : F shft L shft SPC
Assign the argument of F to $A: \quad A=V$ enter
Lexicon

Variable names:	$\begin{aligned} & \text { A, B, C, . . R } \\ & 27,29,31, \ldots .61 \end{aligned}$
Complex assignment symbol:	shft =
(Literals) $\quad \mathrm{x}+\mathrm{jy}$:	x shft J y
$r \perp s$	2 shft K s
(Other operands) minus F:	-F
conjugate of F :	CF
- conjugate of F :	$-\mathrm{CF}$
(Complex dyadic operators)	
plus:	+
minus:	
times:	*
divide:	1
power:	\wedge
Memory recall procedure:	shft L
Rectangular to polar:	shft SPC
Real part of F :	A(F)
Imaginary part of F :	$\mathrm{A}(\mathrm{F}+1)$
Modulus of F :	U (after 'F shft L shft SPC')
Argument of F:	V (after ' F shft L shft SPC')

Evaluate the polynomial $P=A^{4}+(2+j 3) A^{3}-4 A^{2}-$
$(5+\mathrm{j} 6) \mathrm{A}+7-\mathrm{j} 8$, for the present value of $\mathrm{A}(-1-\mathrm{j} 8)$. The expression for P is rewritten in 'nested multiplication' form prior to entering the calculation, since the operators can then be obeyed in the order in which they appear:
$P=(((A+2+j 3) A-4) A-(5+j 6)) A+7-j 8$.
P shft - A enter + enter 2 shft J 3 enter * enter
A enter-enter 4 shft J 0 enter * enter

CODE ENTERED	COMMENTS	DISPLAY
(DEF mode) DEGREE enter shft Z	Sets angle mode \& pointers	
A shft $=-1$ shft J -8 enter enter	Assignment: $A=-1-j 8$	$\begin{array}{ll}-1 & -8\end{array}$
B shft = 10 shft K 45 enter enter	Assignment: $\mathrm{B}=10 \angle 45^{\circ}$	7.07... 7.07...
C shft - A enter + enter B enter enter	The sum of A and B is stored in C	6.07..-0.92...
D shft-A enter * enter B enter enter	Product in D	49.49..-63.63...
E shft - A enter / enter B enter enter	This calculation assigns $\sqrt{(A / B+}$ CD) to E; note it has the form	$\begin{aligned} & -6.36 \ldots \mathrm{E}-01 \\ & -6.36 \ldots \mathrm{E}-01 \\ & -4.94 \ldots \mathrm{E}-01 \end{aligned}$
E shft = C enter * D enter + enter E enter \wedge enter $1 / 2$ enter enter	$\begin{aligned} & \text { temp-A/B: } \\ & \mathrm{E}_{\mathrm{E}}=\left(\mathrm{C}_{1 / 2}^{*} \mathrm{D}+\right. \\ & \text { temp })^{2} \end{aligned}$	19.18..-11.28..
F shft $=-$ CA enter + enter CC enter * enter 1 shft J 2 enter enter	$\begin{aligned} & (-\overline{\mathbf{A}}+\overline{\mathbf{C}})^{*} \\ & (1+\mathrm{j} 2) \\ & \text { where } \overline{\mathrm{A}}= \end{aligned}$ conjugate of A, etc, is assigned to F	21.21...7.07...

CALCULATOR CORNER

A enter－－enter 5 shft J 6 enter＊enter
A enter＋enter 7 shft J－ 8 enter enter
This calculation occupies 12 stages of the buffer：one each for the four occurrences of＇A＇，and two for each com－ plex constant（＇shft J＇）．The correct answer is $\mathrm{P}=2847-\mathrm{j} 493$ ．

Memory use

A to R
Sto Z
Pointers to complex variables
A（27）to $A(62)$ Program working space
$\mathrm{A}(27)$ to $\mathrm{A}(62)$ Complex variables（storage area）
$\mathrm{A}(63)$ to $\mathrm{A}(126) 32$－stage calculation buffer
Remaining memory is entirely filled by the 624 steps of program．

Defined programs

shft Z Pointer initialisation routine
shft $=\quad$ Used as assignment symbol，complex arithmetic
shft J Numerical input，rectangular notation
shft K Numerical input，polar notation
shft L Data recall
shft SPC Rectangular to polar conversion
NB：Program length is critical；add so much as one colon after a label and it will not work at all．Any addition to the program（such as making the＇complex calculator＇program－ mable）will entail a reduction in the size of the calculation buffer（reduce＇ $\mathrm{T}=126$＇at lines 80 and 6 ）．Conversely，T can

1：＂＋＂U＝－U：V＝－V

2：＂－＂$X=X-U: Y=Y-V$ ：RETURN
3：＂\＃＂ 5×1 ：GOTO 5
4：＂／＂$V=-V$ ：$S=U U+V U$ ：If $S=\neq$ BEEP 2：PRINT＂DIV．BY 2ERfi＂：END 5：$T=U Y+V X: X=(U X-V Y) / S: Y X T / S$ ：RETURN

6：＂玉＂AREAD Z：S＝64：T＝126：INPUT＂\＃＂，$A(S)$ ：GOTO 10
7：＂J＂AREAD A（rm）：INPUT＂J＂；A（T）：GOTO 9
8：＂K＂AREAD U：INPUT＂く＂；V：$A(T-1)=U * \operatorname{COS} V: A(T)=U * 5 I N V$
9：$A(5)=T-1$ ：$T=T-2$
1f： $5=5+2$ ：If $5<T$ INPUT $A \not P(5-1)$ ，＂\＃＂，$A(5):$ GOTO 18
2f：$X=f: \quad Y=\beta$
3f：FOR $W=63$ TO S－3 STEP 2：If $A \not \subset(W)=" \wedge "$ THEN 9月
4f：$\quad V=A(W+1): S=S G N(2 d f-A B S ~ V): I F-S$ LET $V=V / C$
50：$U=A(A B S V) * S G N \quad V: V=A(A B S V+1) S * S G N V: G O S U B$ AS (W)
6月：NEXT U
7A：$A(Z)=X: A(2+1)=Y: \operatorname{BEE} P 1$
8f：＂L＂AREAD Z ：PRINT $A(Z), A(Z+1): S=64: T=126: A(S)=Z: G O T 01 \beta$
9月：GDSU日 1fff：$T=A(w+1): U=U A T: ~ X=U * \operatorname{Cos} T V: Y=U * S I N T V:$ coto 6β
1ff：$U=\Omega(X X+Y Y)$ ：If $X=\beta$ LET $V=A S N$ SGN Y ：RETURN
11A：V＝ATN（ Y / X ）：If－X LET $V=V+(S G N Y+(Y=f))$＊ACS -1 12f：RETURN

15f：＂＂$X=A(2): Y=A(Z+1):$ cosub iff：PRINT $u, V:$ GOTO 日f
2ff：＂Z＂for $W=1$ TO 1B：$A(W)=25+2 W: N E X T U: A S(63)="+": B E E P 2:$ END Listing
be increased by two（and the buffer by one stage）for every group of 16 program steps deleted．
John Kerr

Capple computer nuthorised dealer

FOR FREE
INFORMATION SHEETS

THE EDUCATION SPECIALISTS
250 Parramatta Rd．，Annandale，N．S．W． Phone：（02）569－5188．

Network builders, here's your perfect partner.

Once you get to know the new B20 range of microcomputers you'll want to say "I do".

The B20 is ideal for networking. Local or remote. B20 microcomputers can be linked together - up to 17 in a cluster - and each microcomputer can have up to 512 K bytes of memory. Each microcomputer can execute its own interactive application program using its own disk, printer or data communications. Each microcomputer can also share the resources of the master B20 in the network.

B20 Highlights

The B20 offers a wide range of communications protocols which provide it with exceptional versatility for its size and puce.

Its disk capacity can expand from 600 Kb floppy disk to 60 Mb Winchester

The B20 offers a wide range of software, including Word Processing and Multiplan,: a new, advanced electronic worksheet that's one of the most powerful modelling and planning tools available.

B20 Data Manager

But perhaps the most outstanding software available on the B20 is its Data Manager application generator. Data Manager is designed to simplify and accelerate the process of creating programs so reducing the time taken to implement new systems. With Data Manager the advanced hardware of the B20 has a perfect software partner.

Partners in Success

Choosing any data processing system is very much like marriage. Because once you order it, you've formed a long-term relationship with its supplier

That's why one of the B20's biggest assets is the company behind 1 t . Burroughs has 95 years experience in managing information for businesses - from the smallest to the largest. So you can depend on the B20 to come with strong, knowledgeable support. Worldwide service. And a total solution that can make networking more productive for you. For more information on the B20, call Jon Matthews on (02) 9229300

百

80 COLUMN CARD

WHEN USING A COMPUTER ALL DAY THE EIGHTY COLUMN CARD YOU CHOOSE MUST BE THE BEST

Consider these FACTS before you buy.
THE DIGICARD 80 IS FASTER
** $1^{* *}$ The Central Processing Unit in the APPLE is capable of executing around one million instructions per second. The effective processing speed of the APP LE means it is capable of printing characters at a very high rate. The result is that it is very fast to, say, do a program listing or to print out information. This performance is seriously degraded by other eighty col umn cards, typically they take over twice the time to list a program, as a standard APPLE. The DIGICARD 80 is typically over 70\% FASTER than other popular 80 column cards.

BALANCED VIDEO

** 2 ** The DIGICARD 80 has a unique feature which allows the video output to be balanced. This means that you can adjust the video to match a wide range of monitors, but more importantly this feature reduces operator eye strain significantly. A very soothing fact for someone who thinks of a computer as more than a toy.

SINGLE KEY APPLESOFT

* * 3 ** The DIGICARD 80 is the ONLY eighty column terminal that creates single key commands in APP LESOFT Basic. Just type ESC and then one other letter to issue one of eighteen commands. eg Suppose you want to CATALOG a disk, all you need to do is type ESC followed by the SPACE bar and the word CATALOG will appear on your screen. All that is needed now is a carriage return and the job is done. Single key commands are great time savers and help speed up program development time.

NO NEED TO MODIFY THE APPLE

** $4^{* *}$ Human engineering has not been forgotten either. The DIGICARD 80 has an on-screen indication of shift lock status, this removes the need for hardware modifications to the APPLE. An audible shift lock indicator is standard on the DIGICARD 80, a very useful feature especially for the professional typist. Then to make typing still easier we added an inversing cursor so that when you move the cursor around the screen it never hides any characters. Then we made the cursor flash on and off slowly so that even on a screen full of inverse characters you can't lose the cursor.

RESPONDS TO GRAPHICS

 COMMANDS IN ANY LANGUAGE** 5 ** The DIGICARD 80 is the only terminal that will respond to graphics commands in ANY language. Th is feature means you don't have to tediously alter and recompile existing programs.

DIGICARD DISK DRIVE MUCH MORE THAN STANDARD

FULLY APPLE
COMPATIBLE

NO LOSS VIDEO SWITCHING

** 6 ** The DIGICARD 80 has a software controlled video switching system. This feature allows either 40 or 80 columns to be displayed on the terminal. The switching system is a NO LOSS system which means that the normal 40 column display is not degraded.

FULLY COMPREHENSIVE

 COMMUNICATIONS ON THE CARD ** 7 ** The DIGICARD 80 has a fully comprehensive COMMUNICATIONS firmware package that has greater versatility than similar systems. A communications package allows you to transfer data from your computer to virtually any other computer be it large or small. This is a very useful feature if you have access to a large mainframe computer or simply another APPLE computer. Data can be transmitted and received up to 48,000 baud SIMULTANEOUSLY without loss of any characters. Even if your terminal gets a message to beep its bell the DIGICARD 80 will still not miss any characters. The communications package enables you to remotely operate another APPLE with a DIGICARD 80 installed. You can even RUN programs on the remote computer. Who else can do all that and still be able to support both the C.C.S. and the Super Serial card with one firmware package.
LOW POWER CONSUMPTION

** 8 ** You might think with all these features that the DIGICARD 80 would be a power hungry brute, but it only consumes a mere 2.3 watts, quite considerably less than other 80 column terminals with none of the above features. The low power consumption of the DIGICARD 80 means your APPLE will run cool all day long which is a comforting thought.

LATEST RELEASE FULLY APPLE COMPATIBLE DISK DRIVE

The DIGICARD DISK DRIVE is guaranteed to run with all software that a standard APPLE DISK DRIVE can operate with.

PRECISION HEAD POSITIONING

The DIGICARD DISK DRIVE uses a precision taut band that locates the head with greater accuracy. When the APPLE is reading data from a diskette it tries up to 48 times to get the correct data of f the disk. If the head is positioned more accurately in the first place then the number of read attempts can be greatly reduced. This all means that your program and data can be loaded off the disk faster.

FAST TRACK TO TRACK ACCESS

As well as being a more accurate head positioning system the DIGICARD DISK DRIVE mechanism is capable of changing from one track to another FOUR TIMES FASTER than the standard APP LE disk drive. This further adds to the speed that data can be transferred to or from disk.

TRACK ZERO DETECTION

When a standard disk drive is booted it has to find track zero. The normal way creates a horrible clacketty clack noise from the drive mechanism. The DIGICARD DISK DRIVE has a track zero detector that eliminates the unnecessary noise and once again speeds up disk access time.

MORE DATA STORAGE

The standard disk drive stores data on a total of 35 tracks around the disk. The DIGICARD DISK DRIVE has provision for storing data on 40 tracks thus creating storage for up to $\mathbf{2 0 , 0 0 0}$ bytes, this is around 15% more storage than a standard drive.

SUMMARY

When using a DIGICARD DISK DRIVE you are operating a FASTER, more PRECISE and HIGHER STORAGE disk drive than the standard APPLE disk drive while maintaining ABSOLUTE COMPATIBILITY.

INSTALLATION IN LESS THAN

60 SECONDS

** 9 ** INSTALLATION of the DIGICARD 80 could not be easier. The card can be installed and ready to go in less than 60 seconds.

EASY SERVICE

** 10 ** All integrated circuits are socketed for easy service.

12 MONTH GUARANTEE

** 11 ** All DIGICARD products are designed and manufactured in Australia by Maclagan Wright \& Assaciates and are backed by a
12 month guarantee. If any product is found to be faulty within the warranty period it will be replaced free of charge.
DIGICARD PRODUCTS are available from your local APPLE dealer. If you require more information call your APPLE dealer or

CHECKOUT

by Peter MacDonald and vulnerable position. The film terrestrial (E.T. for short) in his endeavours to rejoin his spaceship after being stranded on Earth. E.T. is befriended by a young Earthling by the name of Elliot who assists him in tracking down the fragmented components of his telephone, enabling him to contact his spaceship and so arrange his rescue. The film is directed by Steven Spielburg (he assisted in the development of the computer game and has to his credit such films as Jaws and Raiders of the Lost Ark) who capitalises on the "space anything" of current cinema audiences without going for overkill by setting this "space" adventure on Earth.

This review is actually of the Atari games machine E.T. cartridge. Versions for the Atari 400 and 800 micros are expected here next March which will be a big improvement over the games machine version if Atari's 'Star Raiders' is an indicator. Also, it should be borne in mind that comments regarding documentation could be misleading in that only a prototype cartridge and packaging etc were available for this review.

Atari's E.T. is an animated adventure type game; the aim being to guide E.T. over four sites in search of his interplanetary telephone (so he can call his ship) and then to the landing pad in time to be rescued. Each site is dotted with pits into which E.T. can fall and from which he has to use valuable energy to escape. But, pits also provide refuge from E.T.'s only two adversaries: the scientist and the FBI agent who pursue E.T. across the screen endeavouring to capture him. Apparently the scientist has developed levitation which he has conferred on his FBI associate as they are both able to pass freely over the pits. This makes it a bit unfair as E.T. has to circumvent these obstacles.

Each site is divided into zones which allow E.T. to use one of his powers which is indicated at the top of the screen. These include the ability to sense if a part of his telephone is in any of the pits on the screen, to send a pursuing FBI agent or scientist back to Washington, to eat a piece of candy (which increases E.T.'s energy level) and to move to a new site. One of the most annoying features of the game was that there seemed to be no relationship between sites. If you move E.T. to the
It might be an unusual way to begin a software review, but it will demystify the following E.T. Atari "Checkout" if I first briefly describe (to the uninitiated) the highest grossing motion picture ever.
E.T. (the film) is a clever play on human emotions to present the often maligned life forms existing elsewhere in the galaxy in a pathetically helpless and vulnerable position. The film

[^0]
next site on the right, then up, left and down, you find you're in a different position from which you started. Still, as there are only four sites in which the pieces of E.T. communicator can be hidden, and each site is quite distinctly different from the other, it is easy enough to jump from one to another and know if you've searched that site before.

The FBI agent will, if he makes contact with E.T., take one of the interplanetary telephone pieces and hide it in a pit or, if E.T. hasn't any phone pieces, will take all the candy pieces E.T. has managed to accumulate. The scientist, however, has more sinister intentions and will take E.T. back to Washington for "studying". But he's not interested in E.T.'s telephone or candy, so the scientist is really only a time waster.

If E.T. manages to gather up nine pieces of candy he can call Elliot (from the "Call Elliot" zone on the screen) who'll do some of the hard work and fetch a phone piece for E.T. Once E.T. has all three pieces he has to find a "Call Ship Zone" and move quickly to the landing zone and wait for his spaceship to return. Of course the FBI agent and scientist are sufficiently persistent to attempt to thwart E.T.'s rescue by appearing on the screen at the same time as the spaceship is returning to Earth. The spaceship will not land if any Earthlings are present on the screen, so before you plant E.T. on the landing zone it's a good idea to find the nearest "Send Humans Back Zone" to use as one or other Earthlings appears during the rescue.

Documentation supplied with the cartridge was, as I mentioned before, preliminary and a little difficult to follow, but I would assume that the final product will be of typical Atari quality - excellent.

My biggest criticism of the game is that once you've got E.T. in a pit, either by accident, to evade Earthlings, or to find a part of a telephone, it's occasionally very difficult to get him out. Time atter time I'd use E.T.'s levitation power to float him to the surface, but he would simply fall
back down again. The problem is mentioned in the documentation and the advice given was some help but didn't really solve this rather trying "feature".

There are quite a few features I've not been able to fully describe for space reasons, such as Elliot's appearance should E.T. run out of energy. But 'three strikes and you're out' and Elliot will only help three times under most circumstances. If E.T. runs out of energy again he goes into hibernation. There are also a few strategies I've picked up after playing the game several times: at the beginning of each round it's a good idea to have a quick reconnaisance around the landing pad to locate a "Send Humans Back Zone" which you are likely to have to use several times while waiting for the spaceship to return.

Another important point to remember is that the humans appear from the edge of the screen without warning, so it is a good idea to keep to the centre of the screen wherever possible, while looking for a zone which will allow E.T. to "see" if any telephone pieces are in that site. And there's no use struggling once he's been caught by a human; I've tried and it only wastes valuable energy.

I suppose I missed out on an important point, but the documentation states that once E.T. has accumulated nine pieces of candy, he can call Elliot to fetch a telephone piece for him. Well, on one occasion I called and called and called while at the same time darted from one end of the screen to the other dodging Earthlings. Elliot simply wouldn't come.

The game should be available in retail stores this month for $\$ 69.95$. Planned for next year is another Steven Spielburg creation for your Atari: "Raiders of the Lost Ark".

When you say your disk drive has more juice than Apple's, be prepared to cut one open.

Your Apple computer can grow from ordinary to awesome in a matter of minutes.

The Elite disk drive Series by Rana Systems gives you that kind of magic. Quickly, easily and cost-effectively.

This superb family of sophisticated floppy drives was designed and perfected by a team of industry-respected engineers expressly for Apple computer owners who have long been demanding more disk drive for their money.

Now they have a drive that makes an Apple perform the way it should. For example:

Elite One, the most economical Rana drive, delivers 15% more storage capacity
than Apple's drive. The top-of-the-fine Elite Three will provide an astonishing four- fimes more storage, approaching hard disk performance. It's done through exclusive high-density single and doublesided disks and heads.

Here's a tantalising taste

 of just how formidable your Apple can become.Next to enormously increased disk space, Apple buyers are most excited about Rana's fingertip Write/Protect feature. A pushbutton on the LED-lit panel gives you a new measure of failsafe control

While Elite drives are all plug-compatible with Apple's controller, Rana's vastly superior controller card is a must for those
with growing data processing demands. With it, you control up to four floppy drives using only one slot . . . while still utilizing your Apple computer to achieve dramatic new heights of system flexibility and processing power.

A specially programmed Rana utility disk assures you of far-reaching compatibility, and extra dimensions of business, leisure and learning applications with your Rana-enhanced Apple computer.

There are many, many more operating refinements: Uncanny head-positioning accuracy, 300% faster track-to-track speed, better operating economy, and gentler clamping action through an all-new diskette centering cone, to name just a few.

A disk drive package like this doesn't grow on trees, so write or call today for more information about the Elite Series.

ELITE 1	\$640	(163kb)	with Controller $\$ 790$
ELITE 2	\$830	(326kb)	with Controller $\$ 990$
ELITE 3	. \$1090	(652kb)	with Controller \$1250
ONTROL	\$160	(All pr	include Sales Tax)

CONTACI:

WOMBAT

The world of computing is now available to everyone at very reasonable cost. For parents who wish their children (and themselves) to learn programming, to utilise educational programs, or just to make use of some of the hundreds of programs available the WOMBAT is now released on the Australian market.

* BONUS -

For each WOMBAT sold before January 25th, a choice of any ten programs from the MECC Educational Library will be given free - valued at approx. $\$ 288$!

Standard features:

* built-in floating-point BASIC;
* built-in disassembler;
* a ROM-based system control program;
* color graphics and sound capabilities;
* sockets for up to 48 K bytes of user memory (RAM); 16 K with the plug-in Language Card;
* cassette interface;
* game input/output connector, and two hand controls for games and other human-input applications;
* typewriter-style ASCII keyboard;
* high-efficiency switching power supply;
* eight accessory expansion slots;
* autostart monitor;
* upper/lower case function.

Inputs and Outputs:

* cassette interface (1500bps);
* game I/O: four analog to digital inputs, three TTL inputs and four TTL outputs.
* typewriter-style ASCII keyboard;
* 7 peripheral board connectors fully buffered, with interrupt and DMA priority structure;

NOTE: THE WOMBAT SOFTWARE IS COMPATIBLE WITH ALL EXISTING PROGRAMS FOR THE APPLE II

CONTACT:
Computer Edó Pty. Ltd
364 FERRARS STREET, ALBERT PARK, VIC 3206 Telephone: (03) 6901477
(plus S.T.- \$120)
IF APPLICABLE
$A C=$ apple cassett
$A D=$ apple disk
adventure
CLASSIC ADVENTURE - the ortginal adventure
ACD41-0106 \$ 13.50 BUSINESS
finance and investment -disk
AD162AD $\$ 24.50$

BOARD GAMES

SARGON II -perhaps the ultimate micro chess game ACBUT007 $\$ 30.00$

ELECTRONICS - MAM RADIO

ham package one -disk -contains ohms law, series and parallel calcs, voltage dropping and dividing ADLI6AD

HOME ENTERTAINMENT
BOTH BARRELS -2 games on the one diak COPTS AND ROBBERS -can you escape the tomb GAMMON GOBLINS - a real heart stopper GDLF - play golf in the comfort of your man OIL TYCOON -drill wells, make a million OLYMPIC OECATHLON -become an olympic champion sahara warriors

AD-5IR02 $\mathrm{AD}-\mathrm{SIR13}$
$\mathrm{AD}-\mathrm{SIRO}$
A ADER16 ACO 18A AC079A AD2210MIC ACOB OA

FLIGHT SIMULATORS
AIR PLIGITS SImULATOR -control your own aiteraft AC148A
$\$ 10.00$
SPACE SIMULATIONS
CYger Strike -3D space game MISSION INVASION -space invaders ORBITRON -look out cor the killer satellites planetords -defend your self from the Asteroids PLANETOIDS - disk
PULSAR TWD -two game disk SPACE QUARKS -inject the quarks

WAR GAMES

phantoms five -fly a fighter bomber SKY BOMBLAS player gane \qquad ATARI $\mathrm{AC}=$ atari cassette
$\mathrm{AD}=$ atari diskette
ADVENTURE

ADVENTURE 1 -ADVENTURELAND -the first adventure	AT041-001	\$	16.
adventure 2 -pirate adventure	AT041-002	\$	16
ADVENTURE 3 -MISSION IMPOSSIBLE	ATO41-003	\$	16.50
adventure 4 -vdobio Cas'rle	AT041-004	\$	16.50
adventure 5 -The COUNT	AT041-005	\$	16.50
AdVEnture 6 -strance odyssey	AT041.006	\$	16.50
ADVENTURE 7 -mYSTERY FUN HOUSE	AT041-007	\$	16.50
adventure a -pyramid of doom	АT041-008	\$	16.50
ADVENTURE 9 -GHOST TOWN	AT041-009	\$	16.5
adventure 10-savage island	AT041-0010	\$	16.50
adventure 11-SAvage island part II	AT041-0011	\$	16.50
adventure 12-GOLDEN VOYage	AT041-0012	\$	16.50
ANGLE WORMS	RCO51-0092	\$	16.50
CYPHER BOWL	RC103-304	\$	47.00
delplection	RCO51-0078	\$	13.50
galactic empire	RCO51-0026	\$	16.50
galactic trader	RCO51-0027	\$	16.50
galactic revolurion	RCO51-0028	\$	16.50
GHOST HUNTER	RC123-301	\$	29.00
golden voyage	RC051-0129	\$	16.50
GOMOKU	RC103-302	\$	18.30
lunar mander	RC051-0094	\$	14.50
MOUNTAIN SHOOT	RCOS1-0079	\$	14.50
POLKER SOLITAIRE	AC 103-301	\$	16.00
PREPPIE	RCO S0-0147	s	17.
rear guard -similar to penetrator	RC050-0143	\$	37.50
REVERSI	RC103-303	\$	18.30
Sunday golf	RCOS ${ }^{\text {d-0 }} 0101$	\$	14.5
STAR TREK 3.5	RCO51-0025	\$	16.5
3D TIC TAC TOE	RCO51-032	$\$$	

PROGRAMS FOR MULTIPLE MACHINES

L.G. PET/APPLE/TRS80/atari

ADVENTURE 1, 2 \& 3 -for the TRSBO and APPLE -disk BD032-0010 $\$ 35.95$
 $\mathrm{PC}=$ pot cassette PET
ASSORTED

ARCADE TWO -2 game cassette	PC045P		6.70
CASINO ONE -blackjack/roulette	PCO14P	\$	6.70
CASIND TWO -craps	PC015P	$\$$	6.70
CHIMERA - 6 game casse	PC110p	\$	6.70
CODE NAME CIPHER - 4 code programs	PC112P	\$	6.70
DOW JONES -stock market program	PCO26P	\$	70
ELECTRONICS ENGINEERING ASSISTANT - let your	computer do		
the work Eor you	PCC 22 P	\$	6.70
HELLEIRE WARRIOR	PC141702	\$	23,50
MIMIC -how good is your met.jry	PCO39P		6.70
PERSONAL WEIGHT CONTROL and bio-rythms	PCOO5P	\$	6.70
PENNY ARCADE -6 game cassette	PC044P		6.70
SANTA PARAVIA - very popular adventure	PC175P	\$	6.70
QUBIC 4 GO-moku -2 game cassette	PC038P	\$	6.70
tangle and supertrap	PCO29P.	\$	6.70
TREK X-command a starship	PC029P	\$	6.70
TURF AND TARGET	PC097P	\$	6.70
UTILITY Onf -monitot/programmers calculator	PC105P	\$	6.70

TRS-80 CASSETTES \& DISKS
TBOL12 -ADVENTURE HINT BOOK
TBO112

BOARD GAMES

AMAZINL : :CK IACK MACHINE
MACROPOLY - Play monopoly on your computer
Business
accounts payalbe
ACCOUNTS RECEIVABLE
ACCOUNTS RECEIV
DISK SORT MERGE -MODEL 2
general ledger and cash journal. -taranto
INVENTORY CONTROL -TARANTO
INVOICING -TARANTO
MTC AIDS -FOR THE MODEL 2
MTC CALCS -FOR THE MODEL 2
MTC
MTC REBUILD -FOR THE MODEL 2
MTC SUPERSEDE -FOR THE MODEL 2
RACEIT -GFS -FOR TRS8O MODEL 2
EDUCATION
[TALIAN TEACHER
GRRMAN TEACHER
FLIGHT SIMULATORS
air flight simulator
AIR FLIGHT SIMULATOR
FLIGHT SIMUEATOR - 3 D graphics
MOME ENTERTAINMENT
ADVENTURE -MICROSOF" DISK
BALL TURRET GUNNER -very fast
BARRYS CUBE -rubix cube on your computer
DR CHIPS Eturn your computer in to psyschologist
MIND WARP -3 game cassette
MUSICAL YAT-C -musical strategy machine
OIT, TYCOON
Silver flash pingall -pinball machine
TEMPLE OF THE SUN -adventure
WINNERS DELGHT -4 game cassette
SPACE SIMULATORS
ALIEN ATHACK FORCE/[NVADERS
ATYPACK FORCE -doge the crusher at convoy and dest
before they squash you
before they squash you
COSMIC FIGHTER - fantastic machine language game COSMIC PATROL
DANGER IN ORBIT - Eight the asteroids
GALACTIC TRADER - very fast machine language
GALACTIC REVOLUTION
METEOR MISSION -can you save your astronauts
MISSILE ATTACK -can you defend your cities
PENETRATOR - how far car you penetrate the system
SIMUTEK
SPACE TREK IfI $\mathbf{- 2}$ game cassette
SPACE INTRUDERS
SPACE SHUTTLE -pillot a space shuttle
STELLAR ESCORT-escort your mother ship to safety
ZOSSED IN SPACE - COMPlex spa

UTILITIES
disk scope
DISK LABELLING DISASSEMI,BER (DLDTS)
DYNAMIC DEVICE DBIVERS
GNHANCED BASIC
ENERGY CONSUPMTION -record your utillty bills
PIDPPY DISK MAINTENANCE
PROGRAMMERS PRIMER
PROGRAMMERS PRIMER
THE ELEMENTS -the periodic table of elements
VIDEO SPEED READER -improve your reading speed

WAR GAMES

AIRMAIL PILOT -can you get to Chicago on time AMOURED PATROL - 30 arcade
battleground
COMBAT-requires 2 computer system
NIGHT FLIGHT \sim night flight simulator
PROJECT DMLGA
SHIOWDOWN - can you defeat the fastest draw in town
SLAG WAR
SWAMP WAR
BOOKS
CUSTOM APPLE \& OTHER MYSTERIES
BASIC WITH STYLE
MICROCOMPUTERS AND 3 R'S
PET/CBM COMPUTER GUID
PET \& IEEE A8B BUS
FORTKAN WITH STYLE
ZBJ ASSEMLAY LANGUAGE PROGRAMMING
280 PROGRAMMING FOR LOGIC DESIGN
6502 ASSEMLBY T.ANGUAGE PROGRAMMING
BASIC PROGRAMS FOR THE TRS8O
BASIC FASTER AND BETTER
how to profit from your personal computer
COMPUTRRS IN SOCIETY

201010
rD1011
15.00
15.00

TCO10-
CDF10 $\$ 15.50$

$\operatorname{TC010-0080} \$ \quad$| \$ |
| :--- |
| 19.50 |

TDDF04
TDOF 05
TD275RD
PDDSMMOD2
TDDFO6
TDDF02
TDDF03
TDRO18D
TDCALCS
TDDIVERGE
TDREBUILD
TDSUPERSEDE
TDSUPERSEDES 12.00
TD2GPS 80.00
$\begin{array}{ll}\mathrm{rCO} 7 \mathrm{R} & \$ 10.00 \\ \mathrm{TCTOD-FS1} & \$ 28.00\end{array}$

TC 240 R
TCBIG54
TCBIG53
TC 223 R
TC 237 R
TCBIGS7
TCO11-002
TC011-0028
TCBIG55
TRO12-0102
TCBIG58
TCBIG56
TCO12-00
TCO10-001. 6
TC322R
TCBIG59
TCBIG5
TC010-0049 $\$ 15.00$

TD 139 RD
TO232RD

TC 228 R
TCO
CO

TC132R
TV012-01
TC245R
TC127R
$\mathrm{TC216R}$
TC 076 R
TCO
TC 100 R

25.00
 25.00 $\$ 21.50$
 $\$ 21.50$ $\$ 19.95$
 10.00 25.00
 10.00
 $\$ 12.50$ $\$ 10.00$
 $\$ 10.00$

\$ 10.00
$\$ 15.50$
15.50
19.50
1550

16.50
15.00

50.00
$\$ 50.00$ 25.00 120.00
50.00 50.00
50.00 50.00
40.00 .00 20.00
20.00 16.50
$\$ 15.00$
$\$ 15.00$ 15.00

19.50 | 25.00 |
| :--- |
| 30.00 |
| 19.50 | 30.00

19.50 15.50 10.00
16.00

0 0 50
.50
.00
50

TC106R $\$ 10.00$
TCO10-0140 $\$ 10.00$
$\$ 19.50$
TCl 141 R
TCO
T
TCO10-0123 $\$ 15.50$
TC 159R

$\mathrm{TCl17R}$
$\mathrm{TCO10}$
TCO
S
S
TC012-0103
$\begin{array}{lll}\operatorname{TCO12-0103} & \$ 25.00 \\ \mathrm{TCO10-0018} & \$ & 15.00 \\ \mathrm{TC} 312 \mathrm{R} & \$ & 15.50\end{array}$

BOKA002
BOKBOOS
BOKRO56
BOKGO75
BOKG076
BDKL.OIS

BDKL.nt
BOKLO2

MOKL064
BOKTO12
BOKTO35
BOKT10

B0K7035		00
BOKT 10?	5	30.00
BOKW021	\$	9.
Bokwo 54		8. 50

0

\qquad

\square

\square
\qquad

$\stackrel{C K}{C}$ 80 Column Cards Compared

by Ian Davies

This month, CHECKOUT examines two eighty column cards for the Apple II: namely the Digicard by Maclagan Wright and Associates and the Vision-80 card by Zofarry. The Apple II computer used in the review was kindly furnished by The Logic Shop, Prahran.

In keeping with the high standard of in-depth CHECKOUT investivations, the first action I took after powering up each card was to count the number of columns Eighty on both - drat!! no controversial journalism on this review!

The most noticeable feature about the two cards is their similarity. They both provide much the same features (on the surface) and appear quite similar in construction. Closer inspection of the boards revealed, however, that one was not a rip-off of the other. Each board is based around the 6845 CRT controller chip - a rather gutsy little device that does most of the work of screen control. Both boards also contain two 2716 2k byte EPROMS, one of which is used as a character generator into the 6845 and the other contains 6502 controlling software. The video memory itself is 2 k bytes of RAM, implemented through four 2114 static RAM chips ($1 \mathrm{k} \times 4$ bits) on the Vision-80, and through a single 6116 chip on the Digicard, which appears to be employing slightly more "state of the art" technology. The exception to this is the fact that the Digicard uses an ELEC-TROL Read Relay (presumably to switch between its video output and the standard Apple video output),
whereas the Vision-80 employs a 4016 chip, which is a quad bi-lateral switch and is not subject to the problem of mechanical degradation over a period of years.

Installation of the cards is quite straightforward, simply involving plugging the card into port three on the Apple mother board. A few flying clips do have to be connected to strategic points inside the Apple, but this presented no problems. Although the installation procedures are quite similar, the Vision-80 is probably slightly easier to install, but not by a significant margin.

Both cards provide a "shift-lock" facility. The Digicard alters the cursor character to indicate whether it is in upper case or lower case mode, whereas the Vision-80 displays the fact through a red LED. The LED should be mounted on the Apple console, which involves drilling a hole through the Apple casings. Both manuals stated that the shift mode could be changed by pressing the SHIFT key on the Apple keyboard. The Digicard (which was in the machine when we received it) seemed to prefer the CONTROL key for this purpose. This proved to be caused by incorrect installation in the Apple used in the review, and was not the fault of the Digicard itself.

The two cards have extensive screen control features accessed through ESCAPE or CONTROL keys. Included in the features is a rather nice communications package which allows you
to communicate with mainframes in various data formats while still using the Apple disk. As an added bonus, the Digicard also provides 17 single-key keyword entries, for example, pressing ESC 6 produces GOTO.

The quality of the output is very good on both boards, although there was some problem with character definition on the Vision- 80 (specifically, the horizontal parts of the characters were far too bright) but this appeared to be caused by the fact that the Apple was "tuned" for the Digicard. Both provide excellent high resolution graphics, with the ability to switch between the hi-res screen and the lo-res screen at will. Both boats also allow you to run two monitors - one for hi-res output and one for lo-res. Toggling from one logical screen to the other did produce a slight shudder in the display, but this was common to both.

One area in which the two boards differ is documentation. The manual provided with the Vision-80 seemed significantly superior, including greater detail, and a section at the rear for assembly programmers and troubleshooting. It also contained a circuit diagram.

In summary, the two cards are very much alike, although the Vision-80 probably does have a slight edge due to a couple of extra features and better documentation. Either one is essential for any sort of serious word processing work. The Vision-80 retails for $\$ 337$ and the Digicard for $\$ 354$.

Vision 80

Chpple computer outhorired dealer
DEMONSTRATIONS
OF THE LATEST EDUCATIONAL PROGRAMMES

THE EDUCATION SPECIALISTS
250 Parramatta Rd, Annandale, N.S.W. Phone: (02) 569-5188.

...and SIGMA/OKI made it happent

other people said it had to happen, but SIGMA/OKI made it happen with the SIGMA/OKI IF800 personal computer

Model 10 Personal Computer from \$1,790*

Model 20
"All-in-one Professional Computer from \$5,990*

- rec. retail includes $C P / M$, printer, excludes sales tax

Standard capabilities 64K RAM, 10 programmable function keys (no shift needed), Z80A processor (no extender board needed), 4 MHz cycle speed, 640×200 dot bit addressable graphics, eight foreground plus eight background colours, full 99 station keyboard, upper/lower case, separate numeric \& cursor pads, RS232, light pen, audio cassette, composite video, 40/80 columns, ROM cartridge, and 80 cps 80 column microline printer (fully integrated).

Standard Model 20 capabilities All the above, plus high resolution colour monitor, 10 super function keys, dual 384 KB diskette drives. Fully integrated desktop package.
Options available now: Centronics, IEEE, A/D and D/A, light pen, ROM pack, monitors, $8^{\prime \prime}$ diskette and much more.

Software available now CP/M (standard), BASIC (interpreter and compiler), COBOL, FORTRAN, Pascal. PL/1, Wordstar, Supercalc, Spellstar, FMS-80, Supersort and much more. Applications available now: Padmede fully integrated, simple to use invoicing. Debtors, Stock, Creditors, General Ledger. Other applications from IMS, Boulevard, John F. Rose, Cyres and the whole CP/M world. Ready to use on the Australian Beginning.

SIGMA/OKI Microcomputers,
11 th Floor, 157 Walker St.,
North Sydney, 2060
Dealer Enquiries: David Thomas (02) 4363777

The SIGMA/OKI is available now from:
New South Wales (Sydney City) King St Computers (02) 298554 (Sydney North) Design Data Systems (02) 9222859 John F. Rose Computer Services (02) 4391220 Camcele Pty. Ltd. (02) 4493320 (North Brookvale) Computermax Pty. Ltd. (02) 931383 (South-Redfern) Cybernetics Research (02) 6988286 (East-Bondi) Software Source (02) 3896388 (West-Guildford) A.E.D. Microcomputer Products (02) 6814966 Victoria (Melbourne City) Psycomp (03) 6542351 (South-Prahan) Direct Data (03) 5293800 (South-Albert Park) Computer Edge Pty. Ltd (03) 6901477 Queensland (Brisbane City) The Data Professionals (07) 2297101 Computer Force Australia (07) 2213238 (Brisbane-South) Argonaut Computer Sales (07) 447491 (Cairns) Computer Concepts (070) 517317 (Claytield) Archive Computer Services (07) 2622911 Australian Capital Territory (Canberra) Boulevard Business Services (062) 485411 South Australia (Adelaide) Disc Computer Systems (08) 2714299 Southern Information \& Robotics Pty. Ltd. (08) 2127936 Western Australia (Perth) Taimac Video Corporation Pty. Ltd. (09) 3281988 Tasmania Quantam (002) 345506 New Zealand (Auckland) Microprocessor Developments Pty. Ltd. (649) 540128

COWMUNCEITONS

APC welcomes correspondence from its readers but we must warn that it tends to be one way! Address letters to: 'Communications', APC, P.O. Box 280, Hawthorn, Vic 3122.

Those factors again

In your May edition, a Mr Hunter asked how he might factor a large number. This drew a 'number' of well-meant but ill-informed replies to the effect that if (as suspected) Mr Hunter was looking for prime factors, it could take him about 10^{6} years.

In fact, recent progress in the application of number theory has increased the rate of testing for primality by a 'factor' of 107. The products of 100 -digit primes are no longer thought secure for encryption purposes.

Mr Hunter should contact Dr H W Lenstra (University of Amsterdam, TeI 020 5259111).

Dr David Fisher

Fix wanted

I would be obliged if you could publish this letter as I am at present unable to obtain any advice locally. I have with mee an Osborne 1 and Epson MX80 FT III which I consider to be excellent value for money. However, I find that the 'Install' program is unable to make the best of configuring for my printer as Wordstar expects toggles where the Epson has separate control codes for turning on and off certain modes. Does anyone know how to Install for the Epson? Also, as an instructor in electronics I have to produce inserted graphs of sine waves, etc, in my notes. I have a Basic routine that prints them but it is very slow and cannot be patched to Wordstar . . . any ideas? I have a similar problem with calls in Basic as I don't know the best way to pass variables to the subroutine. What it is to be ignorant!!

It may not be commonly known that location 61281 contains the horizontal screen position during scroll and location 61282 the vertical screen position. It is necessary to divide the horizontal by 2 , and there are offsets, but they allow a fantastic 3D space simulation with centralised aiming sights for those
who like games. It is also much easier to poke direct to the screen RAM as per other machines than to use the Osborne routine. Screen memory starts at 61440 as top left of normal screen. (A Basic listing is enclosed. rough and ready but gives a guide.)

Perhaps there is a user who can find someone to act as a 'penpal' or should I say keyboard-pal, as that is what I need here. I will be here for quite a while longer so the address will hold good until Christmas at least. Richard C Ferryman, 208 Airport Hotel, P.O. Box 2012, Jeddah, Saudi Arabia.

You are certainly not the only one with this Osborne/ Epson problem Mr Ferryman. The fix is too involved to explain here, however it is documented in issue 1 and 2 of 'Portable Companion', the magazine put out by Osborne for its users. - Ed'll Fix It.

Dots or brackets...

In response to your challenge (October 1982), I'd like to suggest a way of listing lists of lists of lists for Lisp without brackets. Logicians began using 'Dot Notation' before the inception of set theory. A century on, they are still ranting, enthusing and raving about how convenient and manageable this has turned out to be, and how clever they were to have thought of it.

Let's jump in at the profound end, with Mr Liardet's first example of Lisp data. Using dot notation, it looks something like this:
(SETQ PEOPLE ': BASIL 32M. CYNTHIA $30 \mathrm{I}^{\text {© }}$ JOHIN 28 M)

Here, the colon has the job of delimiting the scope of the quote mark - but see how clearly it divides the list assignment into destination and source. Whereas the action of the brackets is to bind elements together, dots act as element separators. They can be compared to ordinary prioritised in fix operators: the more dots in a group, the lower the 'priority' of the separator, and the greater its

COMPUTER COUNTRY

PROBABLY THE LOWEST PRICES IN AUSTRALIA

ON PROBABLY THE WIDEST RANGE OF COMPUTER EQUIPMENT COMPUTER COUNTRY, ONE OF AUSTRALIA'S LARGEST RETAILERS NOW GOES MAIL ORDER IN A BIG WAY -- WHY PAY MORE?

Stock up for Christmas

WE CAN PROBABLY SAVE YOU MONEY ON JUST ABOUT EVERYTHING ON SUCH BRAND NAMES AS

-HITACHI	-SANYO	\bullet CASIO
- SENDATA	- OSBORNE	$\bullet 3 M$
- NEC	-APPLE ADD-ONS	\bullet SOROC
-ADDS	-ATARI	\bullet COMMODORE
AND MANY MORE		

BIG SAVINGS ON HARDWARE AND SOFTWARE AND ALL YOUR SUPPLIES TRY US. ONE CALL COULD SAVE YOU HUNDREDS OF DOLLARS.

COMPUTER COUNTRY

 NATIONWIDE PTY.LTD.338 QUEEN STREET, MELBOURNE, VICTORIA 3000.
Telephone (03) 3297533

COMMUNCETLONS

scope (the size of chunk it governs in the list).

For a somewhat dramatic illustration, consider next the definition of the function
LENGTH:
(DE LENGTH . LIST
COND : : EQ LIST NIL . 0 : T : PLUS 1 :
LENGTH . CDR LIST)
If you don't think that makes the list structure a lot clearer, did you notice the printer's error in the original? There's an erroneous right parenthesis on the end of the second line.

Now to those lists of lists of lists. The simplest 1 can think of is a pair of pairs of pairs of atoms. Take your pick - brackets or dots?
(SETQ PAIRS ' $(((A B)(C D))$ ($\mathrm{E} F)(\mathrm{G} H)$))
(SETQ PAIRS ':A B . C D :
EF.GH)
John Kerr

...Lisp or logo

Referring to Mr Kerr's letter suggesting that a Lisp interpreter would run faster if reserved words were to be tokenised and brackets removed, it must be made clear that to the interpreter a program, ie, a list, is represented as a set of linked pointers. The brackets are used to delimit lists only in the input/output routines. In Lisp not only are the reserved words tokenised, all words are! If Mr Kerr desires the clegance of Lisp without so many brackets, then I suggest he considers Logo which is Lisp-based and is friendlier in use. This leads me to my second point.

Mr Parr's Logo compiler written in Basic is an interesting program (though lamentably slow) but contains a bug which could confuse a beginner grappling with recursion. If a previously encountered function is again recognised by the compiler, the number of arguments is not fetched and at run time the function is called with wrong values. This occurs in the Branch program in the September 1982 Logo article. It can be fixed by changing line 9730 to read
IF SY\$=PN\$(W) THEN $\mathrm{N}=\mathrm{CP}(\mathrm{N})$; RETURN
lan A Stewart

Space defender

It is a shame that so much had to be left out of Names of the Nameless in the Oetober issue. In particular, 1 wish room could have been found to
justify the dangerous use of a space as a mathematical symbol in GSB's arithmetic, since this can, as it does here, involve implicit axioms. It seems that the axioms should include (though one can't be sure):

space space	$=$ space
space	$=\square$
space	$=\square$
space	$=\square$
\square	$=\square$

which are isomorphic to
0 or $0=0$
0 or $0=0$
0 or $1=1$
1 or $0=1$
1 or $1=1$
NOT $0=1$
NOT $1=0$
respectively.
If this is so then GSB's arithmetic is nothing more than Boolean algebra and can hardly be said to be more fundamental.

Your article tries to allay the suspicion that Laws of Form is a crank book, and to encourage potential readers, but I must regretfully say 'Not convinced'

James Crook

This is one of several letters from mathematicians who disapprove quite strongly of Spencer-Brown's work. His proof of the four-colour theorem is by no means accepted in the trade', and is as fas as I know not officially published. Not being a professional mathematician, I do not feel threatened by the unorthodoxy of Laws of Form, nor do I feel that APC readers are likely to come to much harm.

It is indeed a shame that so much had to be left out; I obviously failed to make clear that 'space' is not a symbol, but precisely the space in which a cross stands. There is only one initial symbol, the cross, which indicates the marked state. The idea is certainly more fundamental than Boolean algebra, to the point where having to write it in ink on paper almost subverts its understanding. It may well be dangerous, but then so are flying and mountainecring. - Dick Pountain.

What's in a name?

1 am considering selling software for my ZX81 but have a query about copyright. If I see a program working on a computer other than the ZX8 I, and I decide to write a program based on this idea, but using my own programming ideas, is it a breach of

The Vision 80 video card is an easy yet sophisticated way to enhance the performance of your Apple II Computer. Just plug it in and immediately your Apple II will display a full 80 column, $\times 24$ line screen.
The Vision 80 is compatible with existing Apple || BASIC software and provides enhanced screen performance with programs written in BASIC, PASCAL, FORTRAN, CPM (MICROSOFT) and ASSEMBLER.
And the Vision 80 enables your Apple $I I$ to be used as a true intelligent terminal to mainframes and communication facilities.
Compatible with most good word processors, including ZARDAX. APPLE WRITER II and WORDSTAR
A superb set of 128 upper and lower case characters in a 9×11 dot matrix, including 3 dot descenders. Shith and shift lock for upper and lower case. Source switches both hardware and software between 40×24 and 80×24 screen.
Plus: Now includes - UTILITIES DISK, BASICS. DIAGNOSTICS, CHARACTER SET EDITOR AND DEMO PROGRAM. Supports PASCAL key press \& type ahead buffer, graphics character set \& underline set.

Plus: Now available - .
VISICALC and APP,LEWRITER \|(preboot disc) both now available in 80 column fül upper and lower case on screen display.
DISTRIBUTED BY:

copyright if I sell the program? G Smith

This question is the subject of heated discussion at the moment with the recent threat by Atari to prosecute certain companies who are selling their own representations of Pacman. The question is, can you copyright an idea? If you rewrite a program for the $Z X 81$ then it is very unlikely that it will bear any visual or programming similarity whatsoever, so theoretically you are home and dry. The only point to be careful of is the name, which may be copyrighted. Most companies are very reluctant to allow other companies to benefit from a good name that they have built up. - Ed.

Cramming it in

One of the major uses 1 have for an Osborne 1 is the production of business letters using Wordstar. Although these letters are usually short (typically four or five lines) 1 keep running out of disk space, due to the limited (92 k formatted) capacity of the Osborne's drives. Is there
anything I can do about this, short of altering the hardware, with double density, or external drives?
Name and address supplied.
Yes, there's a lot you can do. 1. Make sure you have all $92 k$ available for text files (incidentally, that $92 k$ is quite generous for single density single sided disks - about 70 k would be more typical) by leaving all the Wordstar and other programs (such as PIP and STAT) on the disk on drive A, and having a blank (but formatted) disk on drive B: on entering Wordstar use the Loption to log onto drive B.
2. Once you are happy with the final version of a text file, delete the corresponding. BA K file created by Wordstar. If you are not doing this already, this simple action will double your usable space.
3. The minimum file size on a CP/M 2.2 system such as the Osborne 1 is $2 k$. Obviously this will limit you to 46 files per disk, even if, as in your case the files are actually much smaller. (There is a further limitation in that the disk directory can only accept 64 entries, but this would only be significant with double-density disks.)
4. This limitation can be overcome by merging lots of your older text files into one bigger filc, using either PIP, or the 'Control $K R$ ' function in Wordstar. If you can use the latter you can arrange for each letter to start on a separate page, so they can be individually printed. If the start of each page includes the letter's reference you can
find them in the file using 'Control $Q F$ '.

If your letters were of up to 1 k size, and you were not already using any of these ideas, you could get 23 letters (and 23.BAK copies) on a whole disk. Deleting the .BAK copies would increase this to 46. Merging the letters into bigger files would give a capacity up to 92. - Ed.

Better shuffle

I wish to draw your attention to the card shuffling routine presented by Russell Hutson in the October ' 82 issue of $A P C$.

It may interest some readers to know that the routine is not very efficient. Card shuffling routines were discussed earlier this year in Bytc and a couple

110 REM

120 REM

130 REM

140 REM

OUTPUT-C\$(52) Shufted

USES

160 REM

$\begin{array}{ll}\mathbf{Y} & \text { Random pointer } \\ \mathbf{Z} \$ & \text { Temporary string }\end{array}$

200 I'OR $X=1$ TO 52

$220 \quad \mathrm{Z} \$=\mathrm{C} \$(\mathrm{X}): \mathrm{C} \$(\mathrm{X})=\mathrm{C} \$(\mathrm{Y}): \mathrm{C} \$(\mathrm{Y})=\mathrm{Z} \$$

2

40 RETURN
CARD SHUFFLING ROUTINE
USES - C $\$(52)$ Shuffled card descriptions

ot algorithms presented. One of the more efficient algorithms to result from this discussion is the following:-

If needed, this routine may be invoked several times to keep all the card sharks happy. Earl Chew

KEEPING UP WITH FILING SPACE DEMANDS CAN BE TOUCH.

It seems to
happen before you know it. The business is growing
and, naturally, so are your files.
But the more room you need for files the less there seems to be.
You've added more people, more
equipment, more capacity. The trouble is, you're trying to add more file space, when what you really need is more work space. Those filing cabinets full of folders are costing you too much-in time, in space, in money.
That's where DB MASTER comes in. It provides plenty of expansion capability to meet the needs of most normal growing businesses that use an Apple II. The floppy diskette version, for example, can be expanded to contain up to 387,000 individual records. Need more? The DB MASTER Special Edition For Hard Disk can be expanded to contain up to 7 million individual records.
Of course, the number of records you may store in your particular business depends on several variableslike the number of characters in each record and the kind of information storage you require. Ask your dealer to spell out for you just how much DB MASTER can help your operation.
We designed DB MASTER to make your life easier.
Sure, there are other data base systems for your
Apple II. But if you're not using DB MASTER, you're

WE ARE THE USER FRIENDLY STORE

NEW GENERATION STORE WILL DELIVER AND INSTALL YOUR COMPUTER (IF YOU ARE IN THE SYDNEY METROPOLITAN AREA) FREE OF CHARGE. OUR TEAM WILL SUPPORT YOU WITH YOUR HARDWARE AND SOFTWARE PROBLEMS

WE ARE PROFESSIONALS!

We retail and support....

WITH EVERY PURCHASE OF AN OSBORNE COMPUTER GET A $12^{\prime \prime}$ GREEN SCREEN FREE! OFFER EXPIRES 31st DECEMBER 1982

(6) HITACHI "PEACH"

$\$ 1495$

With every purchase of the HITACHI "PEACH" receive the following software FREE:
NOTEBOOK - A record keeping utility. Permits up to 1500 characters of information to be held as 100 records (index cards) of up to 240 characters per record.
TRENDSETTER - Home finance utility for your monthly expenditures. Allows 15 Debts, 10 Assets, 5 Miscellaneous.
SPEED READER TRAINER - Simulates a tachscope but replaces teacher and machine.

New Relleases

JOYSTICK - \$65.00

Compatible with all microcomputers. Fast and accurate. Metal casing and control.

- \$50.00

Compatible with all microcomputers. Fast and accurate. Plastic casing and control.

NEW GENERATION PROGRAMMER - \$374.00

Keep frequently used routines or special hardware drivers in 24 K of on board EPROM.

Eliminates disk waits and memory use clashes. Write your own system monitor or DOS or patch old one to add new features when not programming EPROMs, the ZIF sockets can be used as a general purpose parallel interface to printers keyboards etc. Many more features available for all popular EPROM types, battery back-up available.

New generation 16K RAM card - $\$ 110.00$

New generation cardreader for education purposes

- \$295.00

OUR PRODUCTS ARE FULLY GUARANTEED FOR TWELVE MONTHS

CLOCK IT TO ME

Bruce Marriott continues his description of a clock/calendar card for the Apple II with a description of the software drivers.

Last month I presented the hardware needed to interface a clock/calendar card based on the OKI MSM5832 chip to the Apple II, or - in rather less detail - to other systems. This month we'll look at the driving software. Naturally, this is based on the Apple, too, but where appropriate I have included some information on amending the code for other systems.

The 6521 PIA

Since the clock chip is accessed through a 6821 PIA, it is first necessary to know how to control the PIA. What follows is
a resumé on how this is achieved - for a more complete version, see the 6821 data sheet.

The 6821 has two 8 -bit ports, A and B; for the purpose of this exercise, they can be considered as identical apart from the unique addresses associated with each. The PIA has four interrupt inputs (two of which may also be used as outputs) which will be discussed later. Each port is controlled by two registers, the data direction register and the peripheral register, which, because of addressing limitations, have the same address (Figure 1), with selection between them being made by the value of bit 2 in a
third register (which has no duplicated address) called the control register. The data direction register for each port governs which bits will act as inputs and which will be outputs; writing a 0 to a bit makes it an input while a 1 makes it an output. The peripheral register allows the setting of levels on outputs and the reading of levels on inputs - a 1 in a bit indicates that it is high (+5 volts) and a 0 low (0 volts)

Figure 2 shows how ports A and B are connected to the MSM5832. It repeats information given in last month's circuit diagram but in a more easily assimilated form. The examples

$\begin{aligned} & \alpha \\ & t \\ & a \\ & 0 \\ & a \end{aligned}$	6821	MSM5832	Remarks
	PA ${ }_{0}$	A_{0}	Address lines to select specific time/date Register Always 6821 outputs.
	PA ${ }_{1}$	A_{1}	
	$P A_{2}$	A_{2}	
	PA_{3}	A_{3}	
$\begin{aligned} & \infty \\ & \stackrel{1}{6} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	PB_{0}	D_{0}	Time \& date Data Bidirectional
	PB_{1}	D_{1}	
	PB_{2}	D_{2}	
	PB_{3}	D_{3}	
	PB_{4}	HOLD	Control lines. Always 6821 Outputs.
	PB_{5}	READ	
	PB_{6}	WRITE	
	CA_{1}	D_{0}	1024H2 5832 Interrupt
	CB_{2}	D_{1}	1 Hz Outputs at
	CB_{1}	D_{2}	1/60 H2 Specified
	CA_{2}	D_{3}	1/3600 H2 rates

Fig 2. 6821 PIA to MSM5832 interconnection
which follow should clarify how the PIA/5832 combination is used.

Clock set and read

The program in Listing 1 allows the clock to be set and read from (Microsoft) Basic and should thus be relatively easy to establish on most popular machines. The program was written in Applesoft Basic and has been annotated. If you are using another machine with the 6821, only a few areas will require amendment, the major one being to the address of the PIA. With the Apple, this address changes depending on which slot is used to house the card; lines 110 to 120 handle this. For most other systems the PIA will be mapped into a specific area of memory, allowing lines 110 and 115 to be deleted and line 120 modified so that variable A0 contains the base address (ie, the address of the first location in the PIA).

Other, more minor, amendments will also be necessary. In line 15 the string variable BELL\$ is set to beep the Apple's speaker; if your machine has no such facility then set BELLS to a null value ("). In line 50 the variable CLR is set to a value which, when CALLed, clears from the current cursor position to the end of the line. The actual CALL is only used once (in line 400) and the two lines should be modified as appropriate. Finally, a few Basic words may require clarification for non-Applers: TEXT declares that an alphanumeric display is required rather than graphics; HOME clears the display and puts the cursor in the top left-hand position; INVERSE declares that all subsequent PRINTing will be black on white; and NORMAL declares that printing will be white on black.

If your design isn't based on a 6821 then, of course, the PEEKs and POKEs to control the interface will also have to be modified; to help you with this, I have REMarked all of them to show what they're doing.

The program has been kept relatively short and simple and will not be dissected. However, it could be substantially improved to make it easier to use. For example, it could allow normal date and time entry (eg, 9/5/82 for date) or automatically calculate the day of the week (see Some Common Basic Programs, 3rd edition, by L Poole $\&_{2} \mathrm{M}$ Borchers, pub Osborne/McGraw-Hill, 1979, for a suitable method). Additionally, automatic leap year bit setting, instructions and extensive error-trapping

```
10 AAT# = " CLIOCK SET AND REAKI"
    15 EELL.$ = CHR$ (7): REM PRINTING BELL$ BEEPS SPEAKER
20 IIM AN(1.2)
SO CLFF= - %68: FEM CALL CLR TO CLEAR SCREEN FROM CURSOR ONHA
        FNS
100 TEXT : HOME : VTAB 1: HTAB (40- LEN (AA$))/ 2: INUERSE : FRINT
        AAD: NOFKMAL
110 VTAE 3: INFUT "ENTEF CLOCK SLOT NUMEER; ";SL
115 IF: SL < 1 OR SL > 6 THEN PRINT BELI$: GOTO 110
120 AO = 49280 + SL * 16
125 A1 = A0 + 1:A2 = A1 + 1:A3 = A2 + 1
150 UTAB S: INFUT "<SJET OR <R`EAL ?: WAN$
15S IF AN* & ? "G" THEN 500
199 REM SET CLOCN
200 POKE A1,0: FOKE AO,255: REM CONFIGURE ADNRESS LINES ON A S
    IIE AS ALL OUTFUTS
205 FOKE AZ,0: POKE A2,2FS: REM CONFIGURE CONTROL & DATA LINES
        ON E SILE AS ALL OUTPUTS
    210 POKE AJ,4: POKE AB,4: REM GET READY TO SET A & S STDE LEVEL
    S
220 UTAR 7: PRINT "ENTER;"; UTAB 9
225 INFUT "UNITS OF MINUTES ";AN(2)
230 INFUUT "TENS OF MINUTES ";AN(3)
235 INFUUT "UNITS OF HOURS ";AN(4)
240 INFUTT "TENS OF HOURSS "IAN(5)
245 INFUT "UNITS OF DAYS ";AN(7)
25O INFUT "TENS OF DIAYS "FAN(B)
25S INPUT "UNITS OF MONTHS ";AN(9)
260 INFUT "TENS OF MONTHS ";AN(10)
265 INFUT "UNITS OF YEARS ";AN(11)
270 INFUT "TENS OF YEARS "FAN(12)
O7S INFUT "LIAY OF WEEK (O SAT, 6 FRI) ";AN(6)
280 INFUT "NEXT FEE GOT 29 DAYS? (Y OR N) ";AN$
285 IF AN $ = "Y" THEN AN( 8) = AN( 8) + 4: REM ADJUST FOR LEAP YE
    AF
290 AN(5) = AN(5) + Bi REM HORK IN 24 HK FORMAT
300 FRINT : INVERSE : FRINT "SWITCH WRITE ENABLE ON SSWITCH NO.
        4)";BELL$
310 INFUT "FRESS RETURN TO SET TIME
                                    ";AN$
315 NOFMAL
320 FOKE A2,16: REM TAKE HOLD LINE HIGH & STOF CLOCK
330 FOK I = 0 TO 12
340 FOKE A2,AN(I) + 16: REM. SETUF DATA LINES
350 FOKE AO,I: REM SETUF ADURESS LINES
360 POKE A2,ANK I) + 80: REM TAKE WRITE LINE HIGH
370 FOKE A2,AN(I) + 16; REM TAKE WRITE LINE LON
330 NEXT I
390 POKE A2,O: REM TAKE HOLD LINE LOW & START CLOCK
400 VTAE 6: CALL CLR: VTAB 8: INUERSE : PRINT "SHITCH WRITE ENAB
    LE OFF";BELL$: NORMAL
410 REM ALTOMATICALLY FALL INTO READ CLOCK
4 9 9 ~ R E M
500 POKE A1,0: POKE AO,25S: REM CONFIGURE ADMRESS LINES ON A S
    IDE AS ALL OUTPUTS
510 FOKE A3,0: POKE A2,240: REM CONFIGURE B SIDE WITH LOWER & B
        ITS AS INPUTS (DATA) & UPPER 4 GITS AS OUTPUTS (CONTROL)
    S20 POKE A1,4: POKE A3,4: REM GET READY TO SET A & SIDE LEVEL
        S
    530 FOKE A2,16: REM TAKE HOLII LINE HIGH TO STOP CLOCK
    540 FOKE A2,48: REM TAKE REAII LINE HIGH
    550 FOR I = 0 TO 12
    560 FOKE AO,I: REM SETUP ALDRESS
    570 AN(I) = FEEK (A2) - 49: REM READ & STORE DATA
    580 NEXT I
    590 FOKE A2,16: KEM TAKE READ LINE LOW
    600 POKE A2,O: REM TAKE HOLD LINE LOW ( & ALLOW CLOCK TO CONTIN
        UE)
    610 AN(5) = AN(5) - 8: REM TAKE OUT 24 HR BIT
    620 IF AN ( 8) = % 4 THEN AN( 8) = AN( 8) - 4: REM ALLOW FOR LEAP
        YEAF EIT
    630 UTAE 10: HTAR 8: PRINT "TIME ";AN(5);AN(4);".";AN(3);AN(2);
    "";AN(1);AN(O)
    640 UTAE 11: HTAB 8: PFINT "DATE ";AN(8);AN(7);"/";AN(10);AN(9)
        ;"/";AN(12);AN(11)
    650 UTAE 15: INUERSE : FRINT "USE 30 SEC ADJUST SWITCH IF NECESS
        ARY": NORMAL
    660 IF AN( 6) = 6 THEN TD$ = "FRIDAY": GOTO }69
    665 IF AN (6) = 5 THEN TIS = "THURSILAY": GOTO }69
    G70 IF AN ( }⿻\textrm{G})=4\mathrm{ THEN TD$ = "UEDNESIAY": GOTO 690
    675 IF AN( 6 ) = 3 THEN TD$ = "TUESDAY": GOTO 690
    680 IF AN (6) = 2 THEN TI$ = "MONDAY": GOTO 690
    683 IF AN( 6) = 1 THEN TDS = "SUNDAY": GOTO 690
    G86 TH$$ = 'SATURIIAY"
    690 UTAB 18: PRINT "( BYE THE WAY: TODAY IS ";TH$;" !!)"
    700 GOTO 530: REM REPEAT REAI & PRINT
    Listing 1
```

would also be useful, but space does not allow such a lengthy program to be printed here.

ROM software

As discussed last month, the Apple I/O facility allows each peripheral card a

256-byte driving program. Having an intelligent card makes for much easier application programming when wishing to access time and date. Listing 2 shows a Basic program that gets and prints the time and date (using the yet-to-be-given driving program) and this should be compared with the much longer and more

Will your firstcomputer be able to expand with you?
 Software programs are available for

 accounting, data-based management, word processing, and other specific requirements such as statistical and financial analysis. And you can also purchase self-teaching programs.

Now you can take advantage of HewlettPackard technology. We have created some of the world's most advanced calculators, instruments and computer systems. Our dealers are fully trained, and more than willing to demonstrate the HP 86 system for you. And our follow-up and service support is first class.

For dealer locations call your local HewlettPackard office and ask for the Personal Com-

Buying your first personal computer can be a confusing experience. You're entering a world of enormous potential, advanced technology, and a whole new language.

The first thing to remember is that a computer can be an invaluable business tool. The second is to simply relate your purchase to your business needs, now...and for the future.

You see, many small computers stay that way. They don't have the capacity for expansion as your business grows, your needs become greater, and you discover how much more a computer is capable of doing. In six or twelve months time, you find you may have to update to a new computer.

Unless you buy a Hewlett-Packard in the first place. The new HP 86 is the ideal first computer.

Small in price. Small in size. But very big in capacity. And it can expand with your needs.

Starting with the basic computer, you can easily add Mass Memory Storage, a Printer, and even Graphics options.
 putation Group. Sydney 8871611 , Melbourne 8906351, Adelaide 2725911 , Perth 3832188 , Brisbane 304133, Canberra 804244. Think of the future when buying your first computer. Don't buy a system you'll outgrow. The HP 86 will grow with you.

CLOCK IT TO ME fiddly clock read part of Listing 1.

For convenience, I decided to use the well-known 2716 (single rail) EPROM for storing the driving programs. Although this device has room for eight driving programs, it is connected in such a way that only four spaces are available; selection of only one space is determined by the settings on two switches. Figure 3 shows how the switches relate to the EPROM memory map and where the driving program which follows (called 'normal format') should be located.

Listing 3 is the annotated assembler listing of the normal format driving program. This does not follow Apple's standard protocol for slot use (as briefly described in the Apple Reference Manual). Normally the Apple takes input, one character at a time, from the input device, stores it in the input buffer ($\$ 20-2 \mathrm{FF}$) and outputs it to the current output device. If the input is the clock driving routine and the output is the Apple screen (as would normally be the case) this would dictate that every time the program wanted the time and date this information would automatically be printed on the screen, which is unduly restrictive and, for most programmers, would be an irritant.

A solution to this is not to use the standard I/O protocol for every character but to fill the input buffer with all characters at the same time and hence fool the Apple into thinking that it has handled each character separately. This works fine but there's still another problem to overcome: whenever an input statement is processed a question mark is sent to the current output device (which could be the printer or a

Address (Hex)	Not Available for driving program Storage (Address line A10 permanently tied to ground).	DIL Switch Setting	
		$\begin{gathered} 1 \\ (\mathrm{~A} 8) \end{gathered}$	$\stackrel{2}{(A 9)}$
3 FF	NORMAL FORMAT	off	off
200	(FREE)	on	off
100	(FREE)	off	on
0	(FRFE)	on	on

Fig 3 Relationship between 2716 memory map and Apple clock card Dil switch settings

```
% rex
10 H2= CHES (4)
20 FFTNT LW"JN#4"
23 THFUT LA&,TT$
20 FFIMT [%"1N#O"
```



```
40 FETMT "TME "कTTक
90 ENL:
```

Listing 2

Listing 3
Stop interrupts. Print space al current output position. $\$ 24$
$(\$ 28), Y$ \$FC10 $\$ \$ E O$
$\$ 24$ $(\$ 26), Y$
$\$ F C 10$ Repeat above 4 lines.
$\$ 03 F \mathrm{C}$
Save status.
$\$ 0100, \mathrm{x}$
$\$ 07 \mathrm{FB}$
Find which slot we are in.
(See Page B1 in Apple Reference Manual.)
(Note that there is no need to save)
(the 6502 Registers, via a call to FF4A).
$\$ \$ 00$
$\$ 0031, X^{\prime}$
Co31, x^{-}
C030, x
$+\$ 04$
\$C081
\$ 100
\$co83y x
+610
$\$ \cos 2, x$
$\$ 004$
$\$ \$ 04$
$\$ 1083, x$
$\$ 10$
$\$ \cos 2$
$\$ \operatorname{cos2} \cdot x$
1330
$\$ 330$
$\$ 0082 \times x$

$+\$ 0 \mathrm{C}$
+5 F
1

 \(\$ \$ 0 \mathrm{O}\)
 \$FF
\$FF
\cos , x
$\cos 2, x$
Read in all time $\&$ date registers,
setting high bits and storing
setting high bits and storing
temporarily in a part of the
input buffer
Take time and date values
from temporary positions and
store in correct part of
input buffer.
Tens of hours value - always working
in 24 hour format so remove bit 3
\int which is set.
Tens of days value-reread and
mask off bits (29 day Febs.) which
might be set.
Take read and hold lines to 5832 low.
$\quad \$ 082, x$
$\$ 1500$
*60d2, x
4* 11
\$03FC
L.oad \times Reg with number of characters in buffer.
Reload status.
1380
$\$ 801$
$\$ 0211$
Add carriage return character
Allow interrupts a!ain.
Back lrom whence we came

WE FELL IN LOVE AND SO WILL YOU
 WITH YOUR IBM PERSONAL COMPUTER

SOFTWARE

VISICALC
WORDPROCESSING
IBM FORTRAN, PASCAL, COBOL AND MACRO-
ASSEMBLER
TIME MANAGER
ACCOUNTING
UCSD FORTRAN AND
PASCAL
DATABASE, ASYNCH.
COMMUNICATIONS
MANY MORE

NOW AVAILABLE

HARDWARE

64K - 256K RAM
160K - 320K DUAL DRIVES MONOCHROME OR

COLOUR GRAPHICS
MS DOS OR CP/M 86
ASYNCH. COMMUNICATIONS
HARD DISK 7, 16, 20 OR
27M
IEEE--488
D/A:A/D CONVERSION
MANY MORE

CALL US TODAY

CPU COMPUTER CENTRE

279 JUNCTION ROAD
CLAYFIELD 4011 QLD

PHONE: (07) 578023
SOLE DISTRIBUTOR FOR:
MICROTECHNOLOGY INC. USA.

CYBERNETICS RESEARCH

120 LAWSON STREET
REDFERN 2016 N.S.W.

PHONE: (02) 69882866993690
HITACHI PEACH - SIGMAOKI
FAIRLIGHT LIGHTWRITER
NEC PC 8000-SIRIUS I

CLOCK IT TO ME

DOS file) and the writing position of that device is advanced twice. If we assume - indeed force - the output device to be the Apple screen, this can be overcome by backspacing the cursor twice with overprinting by blanks.

Listing 3 shows how all this is done in practice. Some of the register contents are based on material in the excellent What's Where in the Apple? (W F Luebbert, Micro Ink Inc, 1981). In particular this relates to the overprinting and backspacing requirement and the setting up of registers after the input buffer has been filled.

Although the normal format listing is given in Slot 4 address space, the code itself is slot-independent since it automatically finds which slot it's in, as described in the Apple reference manual. Note, however, that in this context the call to save register values (as suggested by Apple) does not need to be executed and has not been included.

You can easily modify the program to produce different formats; you have only to arrange the time and date differently in the input buffer and remember to add a carriage return character at the end and load the X register with the total number of characters. If you want to extract the day of the week from the 5832, remember that this is available in part of the input buffer as a product of the normal format code; add the following line to the Basic program in Listing 2: 60 PRINT PEEK (534)-176

This will print a number between 0 for Saturday and 6 for Friday, which can easily be decoded to print the day names, as shown at the end of Listing 1 .

The ROM software developed here is totally Apple-dependent and can't be used with other machines. However, there's nothing to stop you developing your own intelligent firmware specific to your machine. Probably the easiest way to do this would be to find out how variables are stored and then declare the variables 'TI\$ and DA $\$$ as the first variables in any program, followed by CALLs to the ROM software or USR routine to access the card and fill in the variables whenever necessary.

Timing things

As I discussed last month, the MSM5832 can generate interrupts, allowing accurate time intervals to be produced or, as shown here, accurate timing between events. The interrupt rate cinould, of course, be as fast as possible for the highest resolution. The 5832 can generate interrupts at 1024 Hz so it's possible to time to the nearest millisecond, which should be accurate enough for most micro-based applications.

Listing 4 shows the machine code to set up and count interrupts, and Listing 5 gives a driving Basic program: both were written for the Apple II. The easiest way to understand how they work is to follow the listings through in the way that the computer would execute them. Starting with the Basic program in Listing 5, a variable, TI\%, is zeroed. This is the actual timing variable

```
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
NEXT OEJEET **
-.... NEXT OE.JEC
O3FE:
c061:
C062:
coco:
0069:
03F!:
03FL:
0300:
0300:
300:78
301:AN 56 03
0304:801 FE 03 
O307:AN 57 03 
030L1:
030I1:
0301:
03011:a9 00
0301:81% C1 co 
    0312:A9 FF
0314:8II CO CO
0317:A'? 04
    0319:8n c.1 co
O1C:AA9 00
031C:A9 00 
0321:AO FO
0323:8[ C? CO
0326:A9 04
328:8% C3 CO
G32]:A! OF
032п:8L CO CO
0330:A5 20
0330:A9 20
33F;AG 05
33>:an C1
033f:
OBSA:AL1 61 CO
0331:10 F%
033F:53
034.0:
0340:All 62 C0
0343:10 FB
0345:78
345:78
0346:A5 O0
03463:EN C1 CO
34E:8f COC0
351:811 C2% C0
0354:60
0355:
0355;4C 58 03
0356:
0358:
356:
035G:8C FH 03
035E:08
35C:68
03511:8LFFC 03
0.360:[18
360:10
361:A0 03
363:111 6
)365:1.6
366:69 01
036:91860
036A:86
lol
        ONLY WORKS UITH AFFLESOFT.
CLOCKK II IS ASSUMEI TO BE IN SLOT A*
FKESSING RESET STOFS INTERRUP'S.
COUNTS INTO FIKST IECLAKEII VAK゙IABLEE
        WHICH MUST EE INTEGER.
        THIS COLE USEG THE CLOCK II TO GENEFATE INTERELUFTS WITCH
        AFE COUNTEH IHTO AN INTEGER VARIABIE IN THE TTME EETWEEN
        AEE COUNTEII IHTO AN INTEGEF VARIABLE IN THE TTME BETWERN
        FUSH EUTTONS O A\\I I EEING PFESSED. THE INTERRUFT FAYE 
        THE NEAREST 1/1000TH OF A SECOND.
THS COLE U
```



```
l
UEMO TIMEF, FF
***************************************************************
6 *
la*
        *
*5 TGT
    llll
    llll
    STA IRRUEC,
    LILA
*
    \30
    lll
*
                                    NENO NIMER.IF
```

```
* SETUP Cloci, FOR INTERRUFTS
```

* SETUP Cloci, FOR INTERRUFTS
4% *
4% *

```
        LHA #%OO BMAKE A SIDE ALL DUTPUTS
```

 LHA #%OO BMAKE A SIDE ALL DUTPUTS
 44*S
44*S
F
liA
liA
LIIA
LIIA
LIIA \$=00
LIIA \$=00
LIIA \OOO
LIIA \OOO
;B SIDE SETUF, LOWER \& BITS INFUTS
;B SIDE SETUF, LOWER \& BITS INFUTS
S\&ORO
S\&ORO
\& SIDE SETUP, LOWER \& BITS INFUTS
\& SIDE SETUP, LOWER \& BITS INFUTS
LIAG F\&FO
LIAG F\&FO
3TA 3LOT4+2
3TA 3LOT4+2
LHIA
LHIA
STA SLOT4+3
STA SLOT4+3
STA SluOT4
STA SluOT4
STA SLOT4
STA SLOT4
L.LA \$%20
L.LA \$%20
STH SLOTT+t2
STH SLOTT+t2

 LIA $$05
 LIA $$05
 LIA $$05
 LIA $$05
 START
START
lart lum feoo
lart lum feoo
;TANE ADDRESS LINES HTGH
;TANE ADDRESS LINES HTGH
40
; UFFER \& EITS OUTFUTS
; UFFER \& EITS OUTFUTS
LLLA FBO HLOGK FOR START SIGNAL
LLLA FBO HLOGK FOR START SIGNAL
;TAKE REALI LINE HIGH
;TAKE REALI LINE HIGH
\#

```

```

 ----*----------
 N

```


CLOCK IT TO ME
the knowledge that for an integer variable the data is held in bytes 2 and 3 relative to its entry; see page 137 in the Applesoft manual. Before finishing the interrupt routine, and apart from reinstating the temporarily-saved registers, the interrupt flag has to be cleared. When the 6821 actually detects an interrupt, a flag is set and, if the control register is suitably configured, the message that the flag is set is passed on to the micro via the interrupt line. The flag has to be reset by the micro referencing the appropriate peripheral register in the 6821, as it won't reset itself; if it isn't reset, the interrupt line will remain permanently low and the 6502 will continually execute the JRQ routine.

Eventually the stop button is pressed, interrupts are stopped and control returned to Basic. At this point, TI\% now contains the number of interrupts which occurred at the 1024 Hz rate. The rest is easy: convert and round the number, print it, reset TI\% to zero and start again. The CALL-950 is a reference to an Apple monitor routine that clears from the current cursor position to the end of the line.

Before you go crazy trying to test the timer, note the 32 seconds' maximum time between events. This is because the highest value an integer variable can hold is 32767 - 32767 / 1024 (the interrupt rate) gives 32 seconds. With a little ingenuity this can be doubled to 64 seconds with one extra line of Basic - try it!

Conversion to Microsoft Basic on a 6502 machine shouldn't be too difficult; you just need to check on where VARTAB is held in your machine's page zero memory and that integer variables are stored in the same way as in the Apple. This is something at the core of most Microsoft implementations and will probably not have changed. If you can't discover this information, then a less elegant solution is to count into two of your own declared locations at the beginning or end of the machine code and then PEEK the contents into Basic.

\section*{Concurrent processing}

If an interrupt structure is properly set up, a micro can apparently handle two or more jobs at the same time. In reality, of course, the micro is only ever doing one job - but to the user it all happens so quickly that the distinction is invisible. For instance, how many
```

STH%=0
10 TEXT : HOME : INUERSE
15 FFFTNT " DEMONSTFATION TIMER ": NORMAL

```

```

 UTAE 4: FFINT "FRESS GAME FUSH RUTTON O TO STAET"
 FKINT " ANI"
 FKINT "GAME FUSH EUTTON 1 TO STOF TIMER"
 CALLL 768
 TI = TI% '1.024
 TI=(TNT (TI* 1000+.5))/1000
 FFINT : FFINT : FRINT "WELL IOINE!!!!!!"
 FRINT : FRINT TI品 SECS ELAF'SEL EE TWEEN FUSHES";
 CALL - 95%: FKLNT ""
 TI%=0
 100 GOTO 30: REM REFLEAT TIMNNG

```
Listing 5
people know that their PET stops working on their problems every \(1 / 60\) th of a second and goes off to update the time variable?

It would be useful to have the latest time and date continually displayed on the Apple screen, with the variables automatically updated, as on the PET, so that at any point they can be used without the hassle of INPUT TIS, DAS, etc. The code to do this, called CLOCK II.OBJO.HIGH, is given in Listing 6 and is quite long as I have endeavoured to keep the system as flexible as possible. Because of space limitations a complete and detailed breakdown cannot be given; the rationale for this being that most readers would prefer to have something relatively sophisticated rather than something simple (admittedly with a full explanation) and pointers to the brilliant things that are possible by adding 'a few extra lines'.

Unfortunately, at this level of software and machine interaction, it is hard to give directions for non-Apple users on how to amend the program. The best advice I can give is for you to look at the overall structure of the code and then work out the specifics for your own machine.

The CLOCK II.OBJO.HIGH code is managed from Applesoft Basic by the use of the ' \(\&\) ' command which when encountered causes processing to jump to it via a page 3 vector. Program details and specific control mechanics are given at the beginning of Listing 6 .

Before I discuss actual code, most users will want to type it in and play with it. Listing 7 is a short Basic program for testing Clock II Interrupt Handler. The section up to line 40 loads and prepares the system; those after 40 are for experimentation. Note that the machine code is BRUN not BLOADed and that ONERR is used if the clock card can't be found. Also note the setting up of the three interface variables (T\%, TI\$ and DA\$) before any other variables are declared.

Lines after 40 demonstrate how to set up for printing and updating time and date to the screen. Line 110 appears somewhat lame; all that happens is that the program sits and waits at the INPUT. By this point in processing, the time and date are periodically (every second) being updated, while the programmer is collecting input from the user. In fact, your options here are many: you can interact with disk files, print results, use graphics etc. The only limitation is that the string variables TIS and DA\$ can't be put on the left hand side of an expression. Thus
TIS = TIS + "AM"
is not allowed, but
TTS = TIS + "AM" is.
Although not manipulated in the demonstration (but necessary in the program), print the three variables \(\mathrm{T} \%\), TI\$ and DA\$ after you have stopped the program. T\% will contain the number of seconds since \&TI was given, and TI\$ and DA\$ will hold the last time and date.

The machine code in Listing 6 breaks down into three main parts: initialisation, '\&' command handling, and interrupt handling.

Initialisation occurs automatically on BRUNning the code and hence is done only once. This includes discovering which slot the clock card occupies (from the EPROM software on it). If

\title{
FMS SOFTWARE AND HARDWARE FOR CP/M BASED SYSTEMS
}

Agent for: Lifeboat Associates, Sigma International, Compuview, Westico, Memtech, Anderson Digital Equipment, AWA, Televideo, Discovery.

NEW - 16-Bit Software Available
for the IBM PC, plus.
System Tools:
Emulator/86 (the CP/M emulator)
EM80/B6
PMATE 86
UT86
Mailing List Systems:
Postmaster
\begin{tabular}{ll} 
Telecommunications: & \begin{tabular}{l} 
DataBase Management \\
Systems: \\
ASCOM
\end{tabular} \\
T.I.M. III
\end{tabular}
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
Disk Operating Systems: \\
MS.DOS - soon available configured for CompuPro Swoet 17 and Software Developmant System. Currently available for OEM license.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{dia} \\
\hline 18M Personal Computar & \\
\hline Godjout. & E1 \\
\hline Seatte. & \\
\hline Tecmar. & \\
\hline Victor 9000 & \\
\hline Sirius. & \\
\hline
\end{tabular}

\section*{8-Bit Software Available}
\begin{tabular}{|c|c|c|c|c|}
\hline & Language and & Professional and & EXO . . . . . . . . . . . Al & North Star DD. . . . . . . . . . P2 \\
\hline System Tools: & Application Tools: & Professional and & Exxon 510. . . . . . . . . . M5 & North Star Q0. . . . . . . . . P3 \\
\hline DESPOOL & BASIC Utility Disk. & Angal & Exxon 520. . . . . . . . . . . M5 & Northern Telecom 503 . . . . .SM \\
\hline OISILOG & DataStar & American Software Proparty & Findex . . . . . . . . . . . P6 P1 & Nylac Micropol is Mod 11. . . . Q2 \\
\hline DISTEL & FABS & Management Packaga & Godbout (MS-DOS). . . . . . . E1 & Ohio Scientific C3 . . . A3 \\
\hline EDIT & FABS II & Cornwall Apartment Managment &  & OKI IF-800 + MSA CP/M 80 , SP \\
\hline EDIT-80 & Forms 1 for CIS COBOL & Datebook & CP/M 80 & OKI IF \(800+\) OKI/Lifebost \\
\hline FILETRAN & Forms 2 for CIS COBOL & Graitalk & Hexth H89 + Heath CP/M \(80 . \mathrm{P} 7\) & CP/M 80 \\
\hline IBM/CPM & MAGSAM III & Guardian & Hetios II . . . . . . . . . . . . B 2 & \Above OKI entries replace \\
\hline MAC & MAGSAM IV & Professional Time Accounting & Hourikon MLZ SS/DD . . . . SN & catalog entry for OKI IF 800 \\
\hline MACRO. 80 & MAGSORT & Property Managemant & Hourikon MLZ DS/DD . . . . . SO &  \\
\hline MINCE & M/SORT for COBOL 80 & Sales Pro & Houristics HCC Spectrum . . A1 &  \\
\hline PANEL & Programmer's Apprenowe & Torricelli Author & HP-875.25in . . . . . . . . 58 &  \\
\hline PASM & PSORT & Wiremasrer & Hewlert-Packard \(1255.25 i n\). SB & Portec PCC 2000 . . . . . . . . A1 \\
\hline PLINK & OSORT & Univeir 9000 Sories Legal Time & Hewlet-Packard \(1258 \mathrm{Bin} . .\). . A 1 & \begin{tabular}{l}
PET/CBM w/Smail Systems \\
Engineering Box + 8050 . C2
\end{tabular} \\
\hline PLINK II & STRING/80 & Accounting &  & PET/CBM w/Madison Z-RAM \\
\hline PMATE & STRING 8IT & & IBM Personal Computer . . . . G2 & \[
+8050
\] \\
\hline RAID & SUPERSORT & Media \& Formats & ICOM2411 Micro Floppy . . . R3 & Philips MICOM 20018 gin . . . . B3 \\
\hline Reclaim & ULTRASORT II & The list of available formats is & ICOM3712. . . . . . . . . . A1 & Philips MICOM 2001E . . . . . B4 \\
\hline SID & VISAM & subject to change without notice. & ICOM3812...........A1 & Philips M1COM 3003 . . . . . . M1 \\
\hline TRS.80 Model II Cust Disk & & If you do not see your computer & ICOM 45115440 Carridge & Philips P-2000. . . . . . . . MA \\
\hline Unlock & & listed or are uncertain, call to & CP/M \(80 \vee 1.4 . . . . . . . .0 .01\) & Processor Technology Helios II B2 \\
\hline WordMaster & Systems and Aids: & confirm the format code for any & ICOM 45115440 Cartridge & Quasar QDP \(100 . . .2 . .\). . 11 \\
\hline XASM 05. 09. 18. 48. 51. 65. & Benchmark & particular equipment. & CP/M 80 V2.X. . . . . . . . D2 & Quay 500 . . . . . . . . . . . .RO \\
\hline ZAP80 \({ }^{\text {67. }}\) & DocuMate/Plus & AES SUPER PLUS IV . . . . . M4 & ICL. PC10 . . . . . . . . . . So & Cuay 520 . . . . . . . . . . .RP \\
\hline ZDT & Microspell & ADOS Multivision. . . . . . . .RT & IMS 5000 . . . . . . . . . . .RA & Quay 900 . . . . . . . . . . . Al \\
\hline Z80 Development Package & Latteright & ALSPA 8in . . . . . . . . . A1 & IMSAI VDP-40 ........ .R4 & RAIR SD. . . . . . . . . . . .R9 \\
\hline ZSID & Magic Wend & Altair 8800 . . . . . . . . . \({ }^{\text {a }} 1\) & IMSAI VDP-42 ............. \({ }^{\text {IMS }}\) & RAIR DD. . . . . . . . .RE \\
\hline & Spentiguard & Apple CP/M i3 Sector ..... .RG & IMSAI VDP.80 . . . . . . . A 1 & Rasearch Machinos 5.25in . . .RH \\
\hline & Textwriter [II & Apple CP/M 16 Sector . . . . .RR & Industrial Microsystems 5000 RA & Sonco \(70005,25 \mathrm{in}\). . . . . . . \({ }^{\text {a }}\) \\
\hline Telecommunications: & Wordindex &  & Industrial Microsystems . . . . A1 & Sanyo MBC 1000 . . . . . . . SY \\
\hline ASCOM & WordStar & AVL Eagle 1. . . . . . . . . .RB & Intel IPDS DS/CDD . . . . . . M6 & Sanyo MBC 2000 . . . . . . . . SS \\
\hline BSTAM & WordStar Customization Notes & AVL Eagic \(11 . . . . . . . . . ~ S T ~\) & Intel MDS SD/DD. . . . . . . . A1 & Sanyo MBC 3000 . . . . . . . A1 \\
\hline ESTMS & & BASF Systern 7100. . . . . .RD & Intersil Develon System . . . . A 1 & Seattle (15-bit) . . . . . . . . E1 \\
\hline  & & Blackhawk Micropolis Mod II . Q2 & Inter Systems I thaca 800. ., . A1 & SD Systerms 5. 2 Ein . . . . . . R3 \\
\hline RBTE & Systems: & BMC IF-800 . . . . . . . . . . SR & Intertec Superbrain DOSO.1. . R7 & SD Systerns Bin . . . . . . . A1 \\
\hline & CONDOR & California Computer Sys 8 in . .A1 & Intertec Superbrain DOSO.5-2xRJ & Specebyte . . . . . . . . . . A1 \\
\hline Languages: & Formula & CDS Versatile 3B........ 01 & Intertec Superbrain DOS 3x. .RK & Tarbell 8 in . . . . . . . . . . . . A1 \\
\hline ALGOL 60 & HDBS &  & Intertec Superbrain OD , . . RS & TEI 5.25in . . . . . . . . . . . R3 \\
\hline APL/V80 & Hoe & Columbia Date Products Bin. A1 & ISC Intecolor 8063/8360/8963A 1 & TEI Bin. . . . . . . . . . . . . . Al \\
\hline BASIC Compiter & Microseed & Columbia Dats Products \(525 \mathrm{inS4}\) & Kaypro. . . . . . . . . . . . . S6 & Televideo DD/DS SYs 1(801). S5 \\
\hline BASIC-80 & MDBS & Compal \(80 . . . . . . .{ }^{\text {a }}\) Q2 & Lanier E 1. . . . . . . . . . M3 & Telavideo DD/DS Sys 2 (806). S5 \\
\hline Precision 8ASIC & MDES DRS QRS RTL & Commodore CBM/PET w/SSE & Laniar Super + 4 (AES) . . . .M4 & Tochibe T200 6.25in . . . . . . SF \\
\hline BD Software C Compiler & dBASE II & Box + 8050 . . . . . . . . C2 & L.anier Super No problem & Toshibe T250 8in . . . . . . . . A1 \\
\hline CBASIC. 2 & PRISM/LMS & Commodore CBM/PET & (Laniar) . . . . . . . . . . M4 & Triumph Adlar Alphatronic \\
\hline CIS COBOL (standerd) & PRISM/IMS & w/Maddison Z-RAM + 8050CA & Lexitron VT1303 DSDD. . . . S8 & Model P2/64K. . . . . . . .SV \\
\hline CIS COBOL (Compact) & PRISM/ADS &  & Lexor Alphasprint Modet S1. S1 & TRS -80 Model i ( 5 tandard \\
\hline COBOL-80 & T.I.M. III & Computer Ops N C HQ. . . . S S & Lexar Lexoriter. . . . . . . . S1 & Model) . . . . . . . . . . . .R2 \\
\hline Kbasic & &  & Meca Delta 16.25 in . . . . . . P6 & TRS-801 + FEC Freedom . . .RN \\
\hline muLISP/myST AR-80 & General Purpose & CPT 8000 . . . . . . . . . . . A1 & M1COM2001. . . . . . . . . . . B3 & TRS-801 + Omikron 5.25 in . RM \\
\hline Nevada Cobol & Applications: & Cromemco System \(3 . . .{ }^{\text {a }}\). A1 & MICOM2001E . . . . . . . . B4 & TRS-80 Model I + Omikron \\
\hline JRT Pascal & CBS & Cromemico System 2 SD/SS. . R6 & MICOM3003. . . . . . . . . . . M1 & 8in . . . . . . . . . . . . . . A1 \\
\hline Pascal/M & C8S Label Option & Cromemco System 2 DD/SS. RX & Micromation. . . . . . . . . . A1 & TRS-80 Model \(1+\) \\
\hline Pascal/MT & Selector 111-C2 & Cromemeo System 2 DD/DS .RY & MicroMege 85 . . . . . . . . . . SC & Shuffleboard Bin . . . . . A1 \\
\hline \(P_{\text {axcal }} / \mathrm{M}+\) & Selector IV & CSSN Backup . . . . . . . . . . T1 & Micropolis Mod I . . . . . . Q1 &  \\
\hline Pascal/Z & & Datapoint 1550/2150 ..... A1 & Micropolis Mod II. . . . . . . . O2 & Vector MZ . . . . . . . . . . 02 \\
\hline PL/I-80 & Mailing List Systems: & Datapoint 1550/2150 DD/SS .AA & MITS 3200-3202 . . . . . . . B1 &  \\
\hline STIFF UPPER LISP & Benchmark Meiling List & Datapoint 1550/2150 DD/DS.AB & Monroe OC 8820 DD/SS . . . SW & Vector Systern B/VIP. . . . . . Q 2 \\
\hline S-BASIC & Postmaster & Datavue DU80.222 5.25in . . . M 7 & Morrow Discus . . . . . . . A1 & Vista v089 5.25in SD . . . . . RB \\
\hline Timin's Forth & Mailing Address & DECVI \(18 \times\) & Mostek . . . . . . . . . . . . A1 & Vista V200 5.25in DD . . . . . P6 \\
\hline Tiny-C & MailMerge for WordStar & Dolta Systems . . . . . . . . . . A1 & MSD 5.25in . . . . . . . . . .RC & Wongwriter. . . . . . . . . . . . SE \\
\hline Tiny-C Two & NAD & Digi-Log Microterm II . . . . .RD & MULTI-TECH-I. . . . . . . . OL & WORDPLEX, . . . . . . . . . SZ \\
\hline UCSD Pascal & & Digi-Log System 2000 .... RD & MULTI-TECH-II . . . . . . 02 & XEROX 8205.25 in . . . . . . . S6 \\
\hline Whiternith's C Compiler & Numerical Problem. & Digi.Loy System 1000 . . . . RD & Nascom (Gernini drives) . . . .R3 & XEROX 8208608 in . . . . . . A1 \\
\hline XYBASIC & Solving Tools: & Digi-Log Systern 1500 . . . .RD & Nascom II with Lucas Drives . SL & ZEDA 580. . . . . . . . . . SH \\
\hline & T/MAKER II & Oirect OA 1000 . . . . . . . .M2 & National MSC 6600. . . . . . . Al & Zenith 289 + Magnolia \\
\hline & f p & DTC Micro 210A . . . . . . . . SC & NCR81 40/9010 . . . . . . . A1 &  \\
\hline Disk Operating Systems: & PLAN80 & Durango F-85...........RL & NEC PC-8001 . . . . . . . . .RV & Zenith \(289+\) Zonith CP/M 80. P7 \\
\hline Softwere BUS Family & Analyst & Dynabyte D88/2 .........R1 & Nicoler Logic Analyser & Zenith DD/SS . . . . . . . . . SK \\
\hline SB-80 & Microstar & Dynabyte DB8/4 .........A1 & Model 764 . . . . . . . . . . SX & Zenith DD/DS . . . . . . . . . . SJ \\
\hline CP/M-80 & muSIMP/muMATH & Exidy Sorcerer + & NNC 80/80W . . . . . . . . . A1 & Zilog MC22-20, 25, \(50 . \ldots\). . Al \\
\hline MP/M & Stotpak & Lifeboat CP/M 805.25 in .RW &  & \\
\hline & & Exidy Sorcerer \({ }^{+}\) & North Star SD . . . . . . . . . P1 & \\
\hline & & Exidy CP/M 808 Bin . . . . A1 & & \\
\hline
\end{tabular}

Wordstar training guides \(\$ 30\) each
Note that Lifeboat programs have specific hardware and memory requirements but will run on most CP/ M machines with \(48 K\) Byte available.
SEND FOR FULL LIFE BOAT CATALOGUE \$10

\author{
FMS 95 CANTERBURY ROAD, MIDDLE PARK, VICTORIA 3106. \\ Telephone: (03) 699 9899. Telex: AA 31604.
}

\section*{APPLI-CARD \({ }^{\prime \prime}\)}

\section*{4 or 6 mhz Z-80 and 64K ON-CARD MEMORY}


\section*{THE ONE CARD SOLUTION TO EXECUTE CP/M* APPLICATION PROGRAMS}
- Development Languages Available
- Applications Available
- Compare Our Features And Get The Best Value And Performance For Your Money.
\begin{tabular}{|l|c|c|c|}
\hline FEATURES & Z-CARD* & SoftCard* & APPLI-CAR1P \\
\hline 6 mhz Z-80 available & No & No & Yes \\
\hline 64K on-card memory & No & No & Yes \\
\hline CP/M with card & Yes & Yes & Yes \\
\hline SB-80* available & No & No & Yes \\
\hline 40 col. to 255 col. horizontal scroll & No & No & Yes \\
\hline Choice of application & No & No & Yes \\
\hline \(2 K\) PROM on the card & No & No & Yes \\
\hline Real time clock available on the card & No & No & Yes \\
\hline \begin{tabular}{l} 
Expansion interface on the card
\end{tabular} & No & No & Yes \\
\hline 70 col. upper \& lower case & No & No & Yes \\
\hline \begin{tabular}{l} 
A self-contained Z-80A or Z-80B with \\
memory
\end{tabular} & No & No & Yes \\
\hline \begin{tabular}{l} 
One-cardWordStar * execution
\end{tabular} & No & No & Yes \\
\hline \begin{tabular}{l} 
63K available for program development \\
or execution
\end{tabular} & No & No & Yes \\
\hline Menu driven set up & No & No & Yes \\
\hline
\end{tabular}

\section*{" SOFTWARE AND HARDWARE FOR CP/M BASED SYSTEMS}
the card is not found a jump to Basic error handling occurs. The interrupt and \& page 3 vectors are then set up before a return is made to Basic.

When an ' \(\&\) ' command is given processing automatically goes to ENTR YPT at line 183 in Listing 6. Time and date string variable table entries two and three are told where their data is held and the commands following the ' \(\&\) ' are decoded. \&E (end) is looked for, then \&T and finally \&I. If \&T is found (printing of time and date), then all variables associated with the screen at that point are saved. Note that output does not have to go to the screen - it goes to the output device current when the ' \(q\) ' command was given. This is so 80 -column video cards can be catered for, although this will involve extra coding and saving of 80 -column screen variables. Whenever \&T or \&I are decoded there must be an associated number between 1 and 3 to set the rate of date and time revision. The GETRATE routine checks that a valid number exists and stores it for future reference.

Most of the remaining listing consists of subroutines. SETIRQ sets the clock card to interrupt at the specified rate. PRINT updates the time and date on screen by first saving current screen
variables, then substituting screen variables it saved when the '\&' command was given. The time and date are then printed and original screen variables restored. GETIME sets up the clock card and reads the time and date into variable space - note that this does not leave the clock card as an interrupt producer and JSR SETIRQ should normally be executed after JSR GETIME.

The final section is the interrupt handling code (IRQ), which saves all 6502 registers, updates the first integer variable by one and gets/stores the latest time and date. Depending on the contents of the PRINT.TD flag, the screen may also be updated. Finally the interrupt flags in the 6821 PIA are reset and the 6502 registers reinstated.

The Listing 6 machine code has not been optimised for speed or memory conservation as I suspect the sayings would not justify the extra work. As an experiment I have benchmarked the system to determine the overhead involved in using this facility. Ordinarily an empty 1 to 50000 FOR. . NEXT loop executes in 70.5 seconds. If \(\& I 1\) is in operation this becomes 71 seconds and if \& TI is used this comes to 72.5 seconds - a maximum increase in execution time of about three percent
which applies across the board regardless of specific coding.

\section*{Conclusion}

These articles have described a lowcost, high-specification clock/calendar card for the Apple II and similar micros. The emphasis has been placed on providing suitable driving software both as an example and for direct application. Inevitably there are improvements to be made and I hope that users who develop routines and modifications will document them in a future issue. .
 bought that thing.


250 Programs, 60 pages
- Programming Utilities
- Graphic Adventures
- Word Processing
- Disk Operąting Systems
- Business Applications


\section*{V-SP00L 16K PRINT BUFFER}

\section*{SAVE VALUABLE TIME}

Waiting while your computer runs a printer is wasted time. With V--Spool you can continue
to use the computer while printing a letter, invoice or other text.
V--Spool instantly buffers up to 16K in memory - roughly 6 full pages - instead of having to wait for the text to print. You retain complete computer control while the buffered text is simultaneously sent to the printer.
Using a letter quality printer means you'll save up to a minute per page.
Sixty pages a day - thats an hour saved.
NO HARDWARE COST
V-Spool costs a fraction of a hardware buffer. It requires no power, will never break down and is in many cases faster.

SIMPLE TO USE
One CP/M control activates V-Spool. Its operation is foolproof and transparent to your application program - you'll want to use it all day.

NO INTERFACING
V-Spool requires no hardware or software modifications. Just CP/M 2.2. It occupies as little as 3 K of memory. Installation is very simple - it comes ready to run on most CP/M computers.

DISK AND MANUAL -- \$79

\section*{DISTRIBUTED BY}

DEALER ENQUIRIES INVITED
P.O. BOX 364, EDGECLIFF 2027 (02) 389638889 OXFORI) ST. BONDI JUNCTION.

Software Source products are distributed in North America by Compuview Products Inc, Ann Arbor, Michigan.

\title{
Attention to all TRS-80 colour compuler Hilta ifiecoch, 1TS-801 and 3 and System 80 owners
}

ONE BIG ISSUE OF MICRO-80 MAGAZINE FREE!
If you own one of these computers, you should be reading MICRO-80 magazine, the magazine not only written by enthusiasts, but actual owners and operators of the same computers you use

MICRO-80 understands your needs and is vital reading from cover to cover.
Features six new programs in each issue with full operating instructions.
An analysis of each program's structure and operation is included to help you improve your own programming capabilities.

Instructional articles on programming techniques, hardware improvements and answers to readers' problems are also published each month.

\section*{ANOTHER MICRO-80 PLUS}

Readers can purchase a wide range of software and hardware for their systems at keen prices, now.

\section*{DON'T DELAY, ACT TODAY}

\section*{CLOCK IT TO ME}



Listing 6

\title{
Where to get the world's first full colour full-power computer for \(\$ 299\).
}


NEW SOUTH WALES
SYDNEY: The Computer Spot, Shop 4, MLC Centre (02)235 2971

SYDNEY: Computerwave Pty. Ltd., Cnr. George \& Market Sts.
02) 2389111.

CHIPPENDALE: The Microcomputer House 116-120 Abercrombie St. (02) 6987076
KINGSFORD: Micro Visions, 472 Anzac Parade. (02) 6624063 CROWS NEST: City Personal Computers, 5/385-389 Pacific

KILLARA: Nauta \& Associates, 2 Blaxland Road. (02) 4982858

BROOKVALE: Pitwater Comp. Sales, 22 Carter Road

GRANVILLE: Desktop Computer
Systems, 10 Cowper St
(02) 6373062

PARRAMATTA: Trinity Computing, Shop 5, 1-9 Palmer St

LIVERPOOL: Computer Focus, Shop 4/224 George St.
(02) 6008222

HURSTVILLE: Direct Computer ales, 198 Forest Rd
Also at Cnr. Appian Way a Nin Terrace, Bankstown, (02) 7085311
balgowlah Trevor Burton Pty. Ld., Ist floor, 123 Clarence St.
(02) 2901233
LISMORE: Parrys Office Supplies, 25 Molesworth St. (066) 217331
TAMWORTH: Pacific Accounting Systems, 515 Peel St. (067)665122

CARINGBAH: Compute Systems ty. Ltd., 5 President Ave. (02) 5255022

NEWCASTLE: New Tach 337 Hunter Street (049) 2334 NEWCASTLE WEST: Cenco Computer Systems, Shop 4, 767 19) 692902

MAYFIELD: Computer Cellar Pty Lid., 136 Maitland Rd
(049) 675700
AMWORTH: LST Electronics, 1 itzroy St. (067) 663162
PORT MACQUARIE: Central Coast Bus. Mach., The Hub Cen Ballbowrie. (065) 832035 WOLLONGONG: South Coast Computers, 345 Keira Rd.
(042) 287755

WOLLONGONG: L\&B Radio TV Hi-Fi, 250 Crown St. (042) 286911 NOWRA: Centcorp, 90 Worrigee St. (044) 213263
CAMDEN: Seahorse Computer Serv., 33 Mitchell St. (046) 666406 ALBURY: Special Office Equip., 535 Hume St. (060) 214481
FINLEY: Finley Computer Service. Shop 2, 81 Murray St
(058) 831930

ORANGE: Calare Data Systems. 39 Sale St (063) 6268
ORANGE: The Computer Orchard 1 Regency Place (063) 623889
CANBERRA
YARRALUMLA: Yarralumla
Software, 41 Bailey Place.
062) 821379

PHILLIP: Computerland Canberra, P10
FYSHWICK: Sleve's Comm Centre, 57 Wollongong St. (062) 804339

\section*{VICTORIA}

MELBOURNE: B.S. Microcomp P/L, 4th Fri., 561 Bourke St.
(03) 614 1433

MELBOURNE: Computer Country 338 Queens Street (03) 3297533 MELBOURNE: Computerland Melbourne City Centre 123 Lonsda Street (0.3) 6622133
MELBOURNE: Billy Guyatt,
Cnr. Dandenong \& Koornang Rd
Carnegie (03) 5690231
CARNEGIE Billy Guyatt,
1 st floor, Centre Plaza, Cinr. Bourke \& Swanston St., (03) 6631614 RINGWOOD Billy Guyatt. 93-99 Maroondah Hwy., (03) 8702611 HAWTHORN EAST: Computerland Camberwell 399 Fiversdale Road (2) 8131300

ABBOTSFORD: Edible
Electronics,
(03) 415708
MONT ALBERT: Panatronics P/L
MONT ALBERT: Panatronics P/L
691 Whitehorse Rd. (03) 8900579 CHEITENHAM. Contronics, 99 Argus St. (O3) 5846311 BENDIGO: Minit Computer Service, 119 McRae St.
\((054) 432589\)

SHEPPARTON: Data Paris, 1-3
Naomi St. (O58) 217155
BAIRNSDALE: Gippsland Computers, 167 Princess Hwy.
(051) 525939 (051) 525939

QUEENSLAND
STONES CNR: C. W. Electronics,
416 Logan Rd. (07) 3970888 SOUTHPORT: TRS Office Equipment, 115 Ferry Rd. 1075) 323200

MOUNT ISA; Mouni Isa Computer Centre 34 Paradise Flais

TOOWOOMBA: Downs Office Equipment, 203 James St.
(076) 324733

ROCKHAMPTON: Rockhampton Sound Centre, 7 Denham St. (079) 273618

CAIRNS: Onro Industries, 136 Sheridan St. (070) 516111
MAROOCHYDORE: Computer Business Aids. 33 Sixth Ave, (071) 435551

\section*{SOUTH AUSTRALIA}

ADELAIDE: Abraxas Compulers
PtyLtd 151 HuttStreet(08) 2235133
ADELAIDE: Southern Info \&
Robotics, 55 Hindley Street
(08) 2127936

ADELAIDE: Northgate Computing Cen, 117 West Terrace
(08) 2126249

ADELAIDE: Computer imports P/L, 220 Morphett Street
10812118146
RICHMOND: Compucom Pty. Ltd., 131 West Beach Road 108) 3527911

GLENELG: Sargent Electronics P/L, 6 Moseley Stree 08) 2946188

MT GAMBIER: Hutchessonns Comms Centr 5 Elizabeth Street 1087) 256404

RENMARK: Lawton Electrical, 7 Renmark Ave (085) 866682
WHYALLA: Gulf Communications 6 Walls Street (086) 450208

GAWLER: C.H. Rehn Agencies 67 Murray Street (085) 22470

\section*{WESTERN AUSTRALIA}

PERTH: Micr odata Pty. Ltd., 25
Brisbane Street, (09) 3281179
MIDLAND: Lion Electronics 314 Gi. Eastern Hgwy (09) 2744519

INGLEWOOD: Datasoft Pty. Ltd.
Suite 3/870 Beaufort St
(09) 2717169

LEEDERVILLE: J.H. Bruining Computers, 136 Cambridge Street

GERALDTON: Pombe Pty. Litd., 38
Marine Terrace (09) 215272
Also available from all
Backgammon Shops

\section*{TASMANIA}

HOBART: Desktop Solutions, Suite 13, 22 Murray S
(002) 346752

HOBART: Quantum Computers.
194 Liverpool Street (002) 310222
LAUNCESTON: Hopwood
Business Equipment, 107 George
Street 1003 ) 319844 Street (OO3) 319844
LAUNCESTON: Advanced Electronics, 5A The Quadrant (003) 317075

NEW NORFOLK: Craws Television P/L, 40 Derwent Terrace (002) 612699

NORTHERN TERRITORY
DARWIN: Computerworld Darwin
5 Star Vill Smith St (089) 817438
ALICE SPRINGS: Supa Secretaria
17 Hartley Street (O89) 523027

ALSO AVAILABLE FROM ALL DICK SMITH ELECTRONIC STORES
VIC 20. So much brain for so little.
C=commodore COMPUTER
 reality. It's the new Commodore VIC-20, a full-fledged, expandable colour computer that costs the same as a video game.

Everybody loves video games and the VIC-20 has some of the best. But the Commodore VIC- 20 can also help the kids with their homework and mum with her home budgeting. Dad can even take the light, portable VIC20 to the office for financial and business applications. And Commodore has many more applications on the way. With full capability for:
- Education programmes
- Recreational programmes
- Personal computing
- Includes Microsoft, PET BASIC
- Connects to any TV set
- 4 sound generators - 16 colours
- 66 graphic characters
- Full-size typewriter-style keyboard
- Easy-to follow instruction manual
- 25K total memory - 5K RAM
- Memory expansion to 32K RAM

The VIC-20 is the friendliest way we know to learn computing. It has a full computer keyboard even a small child can operate. It plays music, has exciting graphics and lets you create pictures. It even tells you when you've made a mistake and how to correct it. The VIC-20 can take your children from pre-school through post-graduate studies.

\section*{So much brain for so little.}

Learn more about Commodore VIC-20, The microcomputer you can depend on. Call or write for the name, location of your Commodore dealer nearest you.
The Commodore Information Centre, 3 Campbell St., Artarmon. NSW 2064. Phone: 4376296

\title{
RITRONICS WHOLESALE PTY LTD
}

\section*{425 HIGH ST, NORTHCOTE, VICTORIA 3070 (03) 4897099 (03) 4811923 48-50 A'Beckett Street, Melbourne* "BIG BOARD II"}


Jim Ferguson, the designer of the "Big Board"' distributed by Digital Research: Computers, has produced a stunning new computer that we will begin shipping in November calied "Big Board II", it has the following features:
\(4 \mathrm{MHz} \mathrm{Z80}\) - CPU AND PERIPHERAL CHIPS
The Ferguson computer runs at 4 MHz . Its monitor code is lean, uses Mode 2 interrupts, and makes good use of the \(280 \cdot A\) DMA chip.
\(64 K\) DYNAMIC RAM + \(4 K\) STATIC CRT RAM \(+24 K\) E(E)PROM OR STATIC RAM
"Big Board II" has the three memory banks. The lirst memory bank has eight 4164 RAMs that provide 60 K of user space and 4 K of monitor space. The second memory bank has two \(2 K \times 8\) SRAMs for the memory-mapped CRT display and space for six 2732 AS, 2 Kx 8 staticRAMS, or pin-compatible E(E)PROMs. The third memory bank is for RAM or ROM added to the board via the STD bus. Whether bought as a bare board, a full kit, or assembled and tested, it comes with a 200 nS2732A EPROM containing the monitor.

MULIPLE-DENSITY CONTROLLER FOR SSIDS FLOPPY DISKS The new Ferguson single-board computer has a multiple-density disk controller. It can use 1793, 1797, or 8877 controller chips since it generated the signal with TTL parts. The board has two connectors for disk signal with 34 pins for \(5.25^{*}\) drivers, the other with 50 pins \(8^{\prime \prime}\) drives.

VASTLY IMPROVED CRT DISPLAY
The new Ferguson S8C uses a 6845 s CRT controller and 8002 Video Attributed controller to produce a display that will rival the display of quality terminals. Characters are lormed by a \(5 \times 7\) dot matrix on 15.75 KHz monitors and \(7 \times 9\) dot matrix on 18.60 KHz monitors. The display is user programmable with the default display 24 lines of 80 characters.

\section*{STD BUS CONNECTOR}

The Ferguson computer brings its bus signals to a convenient place on the PC board where users can solder an DSTD, bus cards can be plugged directly into it, and it can as well be connected by bus cable to industry-standard card cages.

\section*{DMA}

The new Ferguson computer has a \(280 \cdot\) A DMA chip that will allow byte-wise data transfers at 500 K bytes per second and bit serial transfers via the Z80-A S10 at 880 K bytes per second with serial processor overhead, though the monitor lor the new computer uses the DMA chip mainly for transterring data to and from disk, the chip can readily be used for other things since its "wait/ready" pin can be connected under software control to some half a dozen signal lines. When a hard disk subsystem is connected to the "Big Board II" via its "SASt" interface, the DMA chip makes breathtaking disk performance possible.
"SASI' INTERFACE FOR WINCHESTER DISKS
The "Big Board II" implements the Host portion of the "Shugart Associates Systems Interface". Adding a Winchester disk drive is no harder than attaching a lloppy-disk drive. A user simply 1: Runs a 50 -conductor ribbon cable from a header on the board to any of several inexpensive controller cards for Winchester drives that implement the controller portion of the SASI interface. 2: Cables the controller to an appropriate drive, and 3: Provides power for the controller-card and drive. Since our C8Ios contains code for communication with hard disk, that's all a user has to do to add a Winchester to a system!

A \(280-\) A \(\mathrm{S} 10 / 0=\) TWO ASYNCHRONOUSISYNCHRONOUS SERIAL PORTS
A PARALLEL KEYBOARD PORT = FOUR OTHER PARALLEL PORTS USER \(1 / 0\)
The niew Ferguson single-board computer has one parallel port for an ASCll keyboard and four others for user defined \(1 / 0\). When the computer is powered-up or reset, the monitor looks for a carriage-return at the keyuboard and serial ports. If the first carriagereturn the monitor gets comes from the parallel keyboard, the monitor uses the board's video display circuitry to communicate with the user ria a CRT. If the first carriagereturn is typed at an ASCl terminal attached to a serial port, the monitor autabauds and makes the terminal the system console.

TWO Z80-A CTCs \(=\) EIGHT PROGRAMMABLE COUNTERSITIMERS The new Ferguson computer has iwo Z80-A CICs. One is used to clock data into and out of the Z80.A S10/0, while the other is for systems and application use.

PROM PRDGRAMMING CIRCUITRY AND SOFTWARE
The new Ferguson S8C has circuitry and drivers for programming 2716s, 2732(A)s, or pin.compatible (E)EPROMs.

\section*{CP/M}

CP/M with Russell Smith's CBIOS lor the new Ferguson computer is available for \(\$ 190\). The CB10S is available separately for \(\$ 39.50\). Actual board size: \(39.6 \mathrm{~cm} \times 22.2 \mathrm{~cm}\).

Pricing and Availability:
Availabilly: We should start shippling the second week in November. In single quantities, full kits cost \(\$ 750.00+\) tax, and A\&T'd computers cost \(\$ 895\). There are attractive discounts that range to \(35 \%\) for OEM's and dealers. For details about them please call Rod Irving on (03) 4897099 . le: 3 Ferguson "/ "Big Board" are less \(20 \%\) off the one-off price, hard dlsks dlsk controilers, boxes and power supply to sult both \(8^{\prime \prime} \& 51 / 4 "\) systems will be availabie.

\section*{PRINTERS PRINTERS PRINTERS See Rod Irving for the best range and pricing within Australia ...}


Model 1550


Star DP-8480 Matrix Printer
- low cost - excellent pnat quality - logıc seekıng. bi-directional graphics self diagnostics on board - block graphic characters \(9 \times 7\) dor matrx \(\bullet\) low feed avalable \(\$ 495\)


DOT MATRIX
Microline 80
- Dot matrix 80 CPS - 40.80 .132 columns erated lus Conturuous operation ofrction \& pinfeed paper support What else can we say aboul this great pronter except that for thus month only our SUPER LOW PRICE of \(\$ 435\)


Microline 82A
- serial \& parallel miterface mi board - upper \& lower case characlers with true decoders - multiple character sets - friction and pinfeed paper tear bar - 6 and 8 lines per inch - 40.80. 132 columns/page - bi-drectional print


\section*{MC83 Dot Matrix Printer}
- prim rate 150 CPS \& 80 ch line or \(132 \mathrm{ch} / \mathrm{line}\) - supporis 91,2 fan fold 8 8, roll paper. 81,2 single sheets - \(9 \times 7\) matnx weighl 9 kgs - MC83-2 paralle: interface - MC83-1 serial interface INTRODUCTORY OFFER THIS MONTH ONLY, \(10 \%\) OFF THE RECOMMENDED RETAIL PRICE.


\section*{RITRONICS WHOLESALE}

425 HIGH STREET, NORTHCOTE 3070. MELBOURNE. (03) 489-7099.

\section*{P.O. BOX 235 NORTHCOTE 3070}

Heavy items sent Comet road freight. Allow sufficient freight. Add sufficient money for registration, insurance etc. if required. Prices are correct at the time of advert. As we have no control over suppliers, prices are subject to change without notice. Specifications quoted are those of the manufacturer.
Opening January 4th 1983: 48-50 A'Beckett Street, Melbourne 3000

LETTER OUALTTY
F10 Print Master Daisy Wheel
Fugisu Sp830 letler quality Daisy Printwhee
- fast max 80 CPS exceptional print qualit:
- selectable fine spacing - line 3 min nerwaent - column 2 mm increment - high caphicio thbons - optional tracior feed - fuli graphic yepumentian in in 520 ponts'sq inch - supports metal plastic printwheels


Diablo 620 Serial
New style- Datsy Wheti than automatically aligns uself Robust quality printer with excellem letter quality prints spaced type fonis 512 byte seeking Proportionally


Diablo 630
The absoluse telter quality pronier and industry standard Dalsy Wheel Serial or parallel versions Supports CTK/ACK, DC:/DC3. DTR Protocol Supports metal \& plastic print wheels ( \(68 / 96\) chars) Horizontal \& vertical registration guaranteed 40 CPS punt speed 256 hyles buff
INTRODUCTORY OFFER FOR THIS MONTH ONLY 104 OFF THE RECOMMENDED RETAil PRICE

|Bankcard No.
Exptry Date
Name \& Address


SUBSCRIPTION ORDER FORM
I would like to subscribe to Australian Personal Computer.This is a new subscriptionThis is a renewalThis is an extension subscription1 year ( 12 issues) Australia \(\$ 30.00\) Overseas A \(\$ 40.00\) (surface) A \(\$ 100\) (airmail)
\(\square 2\) years (24 issues) \(\$ 55.00\) Australia only \(\square 3\) years (36 issues) \$75.00 Australia only I enclose my cheque/P.O. made payable to Australian Personal Computer for \(\$\)
\(\qquad\)
Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Postcode. . . . . .
Please send this order form with your remittance to Australian Personal Computer, Subscriptions Department, P.O. Box 280, Hawthorn, Vic 3122.

PIUS
Existing subscribers can take advantage of any of the offers in the adjacent table. Just tick the 'this is an extension subscription' box on the coupon and enclose your payment. The additional copies will be added to your existing subscription automatically. You don't have to wait until it is time to renew (by which time this offer will probably have been withdrawn). Save money by extending your subscription today!

PLUS
We have completely reorganised our Subscriptions Department and any problems, changes of address, etc, etc, will be promptly dealt with by an extremely 'user friendly' human being should you need to write to us.

PLUS
You won't have to read this page for another year!

Why do more people read APC than any other microcomputing magazine in Australia? Subscribe today!!

\section*{THE MICROCOMPUTER THAT'S WORTH ITSWEIGHTIN GOLD}

The way prices of precious stones and metals shoot up and down these days, how could a wholesale jeweller know the value of his stock each day? And what to charge for it?

Well, one of Australia's biggest bought a Commodore microcomputer from us to solve this very problem.

Their assessment?
Brilliant!
We've just supplied their second Commodore, for general ledger and payroll work, and they're considering two more.

All of which says a lot about Commodore. And even more about the standard of service and general backup that we at Microcomp have made a personal trademark. In fact, most people who buy a microcomputer from us become long-term customers. It's better for us. And much better for them.

If you feel that this standard of service is what you need, please call. You'll get personal attention, and the benefit of 12 years experience in the computer business.

\title{
How to make the best home computer in the world even better．
}

\section*{Peripherals to turn a powerful computer into a super－computer for the professional．}

With the Commodore VIC 20 Computer，you have the finest home computer money can buy．And the more you use it，the more you will ask it to do．

Pretty soon，you＇ll want to extend VIC＇s vast potential to the full；and there is a wide range of VIC peripherals to help you do it．

Disk drives，disk－based software，a printer，cassette unit， joysticks，paddles－with these，VIC computing becomes total computing：giving you true professional power and capability．


\section*{VIC PRINTER}

The VIC Printer，like all V1C peripherals，offers a very high specification at a very competitive price．
It will print programs，letters，business data，graphic displays and so on．
Its main features include： 80 characters per line－Tractor feed dot matrix－ 30 characters per second print speed －Full alphanumerics and graphic printing－Double－size character capability．

\section*{VIC FLOPPY DISK UNIT}

The VIC single－drive Disk Unit provides a fast，accurate and efficient means of storing and retrieving data and programs．
Together with the Printer，it transforms the VIC 20 into the ideal system for the small businessman or serious computer programmer．

Features include：
174,848 bytes capacity
－Uses soft－sectored standard 51／4＂single density floppy disks
－Direct interface to VIC
－Direct compatibility with Printer
－Intelligent system independent of VIC．

\section*{EXPANSION MEMORY CARTRIDGES}

Special plug－in cartridges are available to expand VIC＇s memory． \(3 \mathrm{~K}, 8 \mathrm{~K}\) and 16 K RAM packs plug directly into the computer．

A Memory Expansion Board is also available to develop VIC＇s capabilities to the maximum．


\section*{1．Introduction to Basic}

This package contains materials that will enable you to learn the fundamentals of programming in the BASIC computer language on your VIC 20 computer．It assumes no prior knowledge of computer programming and includes two cassettes containing 17 programs specially designed to accompany a comprehensive 152 page manual．

\section*{2．Progamming Aids}

To aid programmers to write their own programs，Super Expander，Machine Code Monitor and Programmers Aid cartridges are available．

\section*{3．Games}

The VIC 20 has the largest selection of cartridge and cassette－based games available on any personal computer． VIC 20 games offer a real challenge and take a great deal of skill，time and mental agility to win．

\section*{4．Joysticks and Paddles}

These accessories make playing games on the VIC even more enjoyable．The joystick has even more practical uses and can be used with high resolution graphics to draw pictures or help with graph plotting．
For full details of VIC 20，its peripherals and software，and a list of your local dealers，contact：
The Commodore Information Centre， P．O．Box 336，Artarmon，N．S．W． 2064
Tel： 4376296


\section*{G ＝ammoare VIC 20}

So much brain for so little．


More machine language subroutines to add to your rapidly expanding library of useful utilities. As always, contributions are very welcome and should be sent to APC SUBSET, care of APC.

\section*{From one base to another}

Dennis May has sent in routines to convert ASCII encoded numbers in one base to ASCII encoded numbers in any other base from 2 to 36 . In bases higher than 10, digits with values 10 to 35 are represented by the letters A to Z. There are three routines. The first, given here in Datasheet XBIN, converts ASCII to unsigned 32-bit binary. The second converts 32 -bit binary to ASCII, and the third, using the first two, converts ASCII from one base to another. You might like to have a go yourself at the last two, before Dennis's versions are printed - probably in February. (Read on to see what happens in January.)

\section*{Datasheet}
\(:=x B I N-\) convert unsigned base \(2-36\) number to 32-bit binary ; MCLASS: ?
/TTIME CRITICAL?: no
;/DESCRIPTION: Converts an ACCII base 2-36 number to a
:/ACTION: Clear 32-bit unsigned binary number

\(\begin{array}{ll}\text { !/ clear. } & \text { Multiply 32-bit accumultaor by base no and add }\end{array}\)
:! digit: if overflow, then return with \(C\) set
:/SUBR DEPENDENCE digit
- SUBR DEPENDENCE: none
:/INTERFACES: none
; IINPUT: an ASCII coded number in RAM terminated by ODH
: \(/\) (carriage return) with digits of values 10-35
; represented by the letters A-z
the address of the ASCII coded number in Ma(low)
:/ and MS (high), the base of the number (between 2 and 36 ) in Mo ; loUTPUT: for a valid number, cy clear. The 32-bit result
; \(/\) in MO-M3 with the most significant byte in M3 M4-M6 unchanged
;) for overflow: Cy set. M4-M6 unchanged. MO-M3
:/REGS USED: A, X,Y, P and MD-MC
I/STACK USE: ?
:/LENGTH: 106
; IPROCESSOR: 6502
;/PROCESSOR: 6502 ;byte count
XBIN: LDX i4
XBIN1. STY MO- X index counter
DEX ;accumulator a
BNE XRIN1
STIX MC ; save index counter
LDA M4, Y ; fetch character
CMP CSOD ;ifCR
BEQ END ;then end
SEC ; convert:
SBC \(\ddagger \$ 30\)
BCC ASCY
SBC ET ;binary
;save oigit \(\begin{array}{ll}A 2 & 04 \\ A O & 00 \\ 94 & 2 Z \\ C A & \\ 00 & F B \\ 86 & 2 Z \\ A 4 & 22 \\ B 1 & 22 \\ C 9 & 0 D \\ F 0 & 52 \\ 38 & \\ E 9 & 30 \\ C 9 & 0 A \\ 90 & 02 \\ E 9 & 07 \\ 48 & \end{array}\)
'ASCY: PHA


Before any 6502 coders leave us, they might like to look at the Z 80 routines that follow, because these are to be given next month in 6502 code. That's what happens in January or part of it, anyway.

\section*{Data integrity}

Transmission errors are a problem of \(n c\) mean consequence in computing, where the integrity of stored or transmitted data is of paramount importance and, naturally, there is a multitude of methods designed to deal with it. Some only indicate that an error has occurred while others can identify the error and thus allow for its correction.

John Kerr brings this important subject to the notice of Sub Set for the first time with the routines ECAL8 and EFIX8, which he says are based on the simplest method of data protection.

ECAL8 produces an error correction byte (ECB) for each data block up to 31 bytes in length. The method could accommodate 32 bytes but, as the ECB is to be appended before transmission or storage, John sensibly sets a limit of 31 data bytes so that the total number of bits of data and ECB is not greater than 256.

The ECB is a parity coding formed by using a parity mask unique to each bit in the data block. The mask is simply the binary number of the position of the bit from bit 0 of the byte following the data. Thus the parity shown in each bit of the ECB is of those data bits which have the corresponding bit set in their position number. For example, bit 5 of the ninth byte from the end would have the position number and parity mask 01001101 where the highest five bits of the mask give the byte number from the end of the block and the lowest three bits give the position of the data bit in that byte. Its parity would be included in bits \(0,2,3\) and 6 of the ECB

\section*{Datasheet}
```

;=ECALB-
:/TIME CRITICAL?: no

```
;TTIME CRITICAL?: no
; /DESCRIPTION: calculates a onemit error-correction gyte
\(\begin{array}{ll}\text {; } \\ \text { ! } & \text { (ecb) to be appended to o data block of } \\ i / & \text { to } 31 \text { bytes and subsequently used by the }\end{array}\)
; \(/\) ACTION: abortror detect/correct routine EFIX8
;/ACTION: Abort if no. of bytes=0 or GTHAN 31
in \(/\) intiatise mask to \(8 *(\) no of bytes) +7

\(\begin{array}{ll}\prime / & \text { if bit is } 1 \text { then ecb*ecb xor mosk } \\ \vdots / & \text { decremen mask }\end{array}\)
; / SUBR DEPENDENCE: none
; INTERFACES: none
:/INPUT: AFno of bytes HL points to ist byte
:/OUTPUT: Cy reset: abort
\(\because 1 \quad\) Cyset: \(A=e c b H L\) points to blork+1
:/REGS USED: AF, HI
;/STACK USE: 4
:/LENGTH: 36
; IYME STATES: \(103+332\) per byte average
:IPROCESSOR: 280
ECALB: AND A ;terminate if
\(\begin{array}{rll}\text { ELALB: } & \text { AND } & \text { A } \\ & \text { RET } & 2 \\ & C P & +32 \\ & R E T & N C\end{array}\)
    ;no of bytes+0
        ;no of bytes
;or over 31
    PUSH BC
    ; save working registers
    \(\begin{array}{ll}\text { PUSH DE } \\ \text { RLA } & \text {; multioly a by eight }\end{array}\)
\(\begin{array}{ll}\text { RLA } & \text {;multioly a by eight } \\ \text { RLA } & \text {; } \\ \text { RLA } & \text {;add } 7 \text { for initial mask } \\ \text { LD } 0,+7 & \text {; }\end{array}\)
        ;using D later as a
        - constant for speed
        ;save initial mask
        ; clear erb
        ; \(6=8\) for bit counter



SKIPX: DEC E :next mask
    ;repeat. for all bits in byte
    ;point to next byte
    : temp store ect while
    ; checting for end of block
    : when mask=?
    : when mask=?
    8 ;get ecb bach
    NC, NBYTE; repeat for all bytes in block
    ; restore
    ; registers
    \(\begin{array}{ll}\text { POP } \\ \text { POP } & B C\end{array}\)
    RET

The error detection routine EFIX8 uses ECAL8 to calculate a new ECB for the mask, or bit position number, included in the parity of one received or retrieved data and exclusive-ORs this with the appended ECB to produce a 'correction code' which is the ECB (because the bit was set to ' 1 ') but not in the other (because the bit was reset to ' 0 '). If none of the bits is inverted then the correction code will
be zero. If error is indicated EFIX8 uses the code to isolate and re-invert the corrupt bit.

\section*{Datasheet}


John warns that this method can only cope with at most one bit error in the data block and requires that the ECB be received intact. More than one error will not be detected as such and may result in EFIX8 actually inverting a correct bit. Given this limitation, however, the method is fast and is capable of correcting about 95 percent of errors in a system where the probability of bit error is less than 0.4 percent. It also has a very low redundancy figure of 3.125 percent for a 31-byte block.

\section*{Flag of convenience}

I would like to draw your attention to the use of the N flag in EFIX8 to indicate whether a correction has been made or not. The \(\mathbf{N}\) result is a consequence of the operation immediately prior to exit, and John obviously noticed this fact and used it for speed and shortness in the routine. But it is difficult to test, unlike Cy and Z, which both have a relative jump conditional on their status. Should a Class 1 routine use any flag for passing information or be limited to the easily tested Cy and Z flags?

Flags are also the subject of a letter from K P Leary, who would like to see the convention \(\mathrm{Z}=\mathrm{OK}, \mathrm{NZ}=\) Error used in Sub Set routines, as is used on the TRS-80. Apparently it makes for easier programming than the other way round. He also offers coding to complement the Z flag:
\begin{tabular}{ll} 
PUSH & BC \\
PUSH & AF \\
POP & BC \\
BIT & \(6, C\)
\end{tabular}


\section*{The Complete Worh Station}

\author{
COMPUTER DESK \\ large top \(1.2 \mathrm{mx} \cdot 7 \mathrm{~m}\) built in power points built in power filter storage shelf \\ ACOUSTIC CABINET double perspex window cooling fan \\ lead foam insulation \\ free standing \\ power point inside
}

ALL FOR JUST \$579

(available separatly)

\section*{A QUIET OFFICE AND A COMFORTABLE OPERATOR LEADS TO INCREASED EFFICIENCY}
available directly from the manufacturer - Creative Engineering PTY LTD



\section*{VIVA LA KAYPRO II. THE NEW REVOLUTION.}

This portable business computer brings you the big screen, double density disks and more standard features

It is Australia's most cost-efficient business partner and is priced at less than \(\$ 2995\). After a worldwide review of state of the art computers, the President Group chose the KAYPRO II as the optimum portable business computer to meet the demands o Australian business. It is light, easy to operate and is presented in a self-contained, fullyearthed metal case that stores comfortably under an airline seat. The KAYPRO II is today's most aggressive combination of performance and pricing.

KAYPRO II - MORE STANDARD FEATURES
23 cm green screen, restful to read and brightness adjustable. 80 columns \(\times 24\) rows. Double density disks. store \(200,000 \mathrm{ch}\). each. CPU: \(\mathrm{Z8} 0^{\text {TM }}\) with 64k Bytes. 8 baud rates selectable. RS-232C
interface. Full typewriter keyboard, 14 key numeric pad and cursor control. CP/M* 2.2 .

KAYPROII SCREEN

\section*{Osborne}
screen

PRESIDENT GROUP STAR SERVICE
The President Group offers the services of 290 staff and over 160 vehicles, branches in all states, dealers in country areas and a service network of highly experienced professionals that's second to none. We guarantee the product. the service and the customer's satisfaction.

DFILTA COMPUTERS \begin{tabular}{l}
12 Fehtionstone \\
Barinstrwn \\
In \\
\hline
\end{tabular} Tel 7056536
DESKIOP COMPUTERS
 VICTORIA DISTRIBUTDR: PRE SIDENT COMPUTEAS VIC


SOUTH AUSTRALIA DISTRIBUTOR: PRESIUENT COMPUTEASS S Actelarte
Toif (08) 223 65.13 OUEENSLAND DISTABBUTOR
 Tof 10713970888
W.A. OISTAIBUTORS RE SIDF N1 COMPMTERS WA 248 Nerww:asile Siteet W J MONCRMI: SF PTY 1 ID
17.6 Winenocur Streat. 572 A.C.T. DISTRIBUTOR:


\section*{KAYPRO II}

SELECT \({ }^{1 M}\) word processing and mail merge. The New Revolution
PROFITPLAN \({ }^{\text {MM }}\) spreadsheet programme.
TEACH \({ }^{19}\) - self-teaching disk for word processing. S-BASIC. INSTALL
\[
\text { POP } \quad \text { BC }
\]
and the Sign and Parity flags:
\begin{tabular}{ll} 
PUSH & BC \\
PUSH & AF \\
POP & BC \\
LD & A,80H (LD A,+2 for Parity) \\
PUSH & BC \\
POP & AF \\
POP & BC
\end{tabular}

\section*{8048 keyboard}

Since we are touching on interfacing, here is a listing of some 8048 assembler code from Jim Chance. It uses port 1 (P1) to read and debounce a \(4 \times 4\) matrix keyboard. Jim says the 8048 processor is much used commercially and can be found in many products; in, for example, the Tandy Quickprinter 1.

'Good God! You don't still migrate by instinct, do you?!!'

G-PASCAL VERSION 2
Improved, more powerful version of our popular Pascal compiler.

\section*{G-PASCAL ADVENTURE}

Skeleton adventure game written in G-Pascal for you to enhance. Includes source code on disk, listing and hints..
G-PASCAL RUNTIME SYSTEM
Run G-Pascal P-codes independently of the compiler. Very useful. (Requires Version 2 compiler) \$35

\section*{G-PASCAL STARTER KIT}

Introductory offer - all of the above combined................... \(\$ 110\)
LIFE
Hi-res machine code of J. H. Conway's 'Game of Life'. Displays up to 44,800 'lives'
GRAPHICS DUMPS
Datasouth DFS180 printer ...................................................... \(\$ 40\)
OKI Microline 84 printer .......................................................... \(\$ 40\)
DIGICARD-80 VISICALC CONVERTER
Run Visicalc with Digicard-80 - use all 80 columns - upper and lower case.

All prices include airmail postage.

Send cheque or Bankcard number to:
Gammon \(\mathcal{E}\) Gobbett
Computer Services Pty Ltd

P.O. Box 124, Ivanhoe, Vic 3079. Phone: (03) 4971283

\section*{Minerva Micronvare}

9/43 Kensington Road, South Yarra. 3141
WE'RE NOT AUSTRALIA'S BIGGEST HITACHI DEALER BUT THAT MEANS WE'RE SMALL ENOUGH TO CARE.

WE OFFER EXPERT ADVICE, FREE INSTALLATION AND A CUSTOM SOFTWARE DEVELOPMENT SERVICE TO MEET YOUR SPECIAL NEEDS.

\section*{CALL GREG HUBBARD FOR A CHAT NOW ON (03) 2417094}
* FULL RANGE OF HITACHI HARDWARE AT VERY COMPETITIVE PRICES
* WIDE VARIETY OF BUSINESS, LEISURE AND EDUCATIONAL SOFTWARE INCLUDING ALL HISOFT PRODUCTS
* GRAPHICS CHIP UPGRADE
* SCRAMBLER - THE ULTIMATE SPACE AGE GAME
* PRINTERS, MODEMS, DISKS, PAPER ETC.
 microcomputer. First of all, don't be fooled; there's nothing complicated about this business, it's just that we're surpounded by an immense amount of necessary jargon. Imagine if we had to continually say 'numbering system with a radix of 16 in which the letters \(A\) to \(F\) represent the values ten to 15 ' when instead we can simply say 'hex'. No doubt soon many of the words and phrases we are about to explain will eventually fall into common English usage. Until that time, APC will be publishing this guide - every month.

We'll start by considering a microcomputer's functions and then examine the physical components necessary to implement these functions.
The microcomputer is capable of receiving information, processing it, storing the results or sending them somewhere else. All this information is called data and it comprises numbers, letters and special symbols which can be read by humans. Although the data is accepted and output by the computer in 'human' form, inside it's a different story - it must be held in the form of an electronic code. This code is called binary - a system of numbering which uses only 0 s and 1 s . Thus in most micros each character, number or symbol is represented by eight binary digits or bits as they are called, ranging from 00000000 to 11111111.

To simplify communication between computers, several standard coding systems exist, the most common being ASCII (American Standard Code for Information Interchange). As an example of this standard, the number five is represented as \(00110101-\) complicated for humans, but easy for the computer! This collection of eight bits is called a byte and computer freaks who spend a lot of time messing around with bits and bytes use a half-way human representation called hex. The hex equivalent of a byte is obtained by giving each half a single character code (0-9, A-F): \(0=0000,1=0001,2=0010,3=0011,4=0100\), \(5=0101 \ldots E=1110\) and \(F=1111\). Our example of 5 is therefore 35 in hex. This makes it easier for humans to handle complicated collections of 0 s and 1 s . The machine detects these 0 s and is by recognising different voltage levels.
The computer processes data by reshuffling, performing arithmetic on, or by comparing it with other data. It's the latter function that gives a computer its apparent 'intelligence' the ability to make decisions and to act upon them. It has to be given a set of rules in order to do this and, once again. these rules are stored in memory as bytes. The rules are called programs and while they can be input in binary

\section*{This is our unique quick-reference guide, reprinted every month to help our readers pick their way through the most important pieces of (necessary) jargon found in APC. While it's in no way totally comprehensive, we trust you'll find it a useful introduction. Happy microcomputing!}
or hex (machine code programming), the usual method is to have a special program which translates English or near-English into machine code. This speeds programming considerably; the nearer the programming language is to English, the faster the programming time. On the other hand, program execution speed tends to be slower.

The most common microcomputer language is Basic. Program instructions are typed in at the keyboard, to be coded and stored in the computer's memory. To run such a program the computer uses an interpreter which picks up each English-type instruction, translates it into machine code and then feeds it into the processor for execution. It has to do this each time the same instruction has to be executed.
Two strange words you will hear in connection with Basic are PEEK and POKE. They give the programmer access to the memory of the machine. It's possible to read (PEEK) the contents of a byte in the computer and to modify a byte (POKE).
Moving on to hardware, this means the physical components of a computer system as opposed to software - the programs needed to make the system work.

At the heart of a microcomputer system is the central processing unit (CPU), a single microprocessor chip with supporting devices such as buffers, which 'amplify' the CPU's signals for use by other components in the system. The packaged chips are either soldered directly to a printed circuit board (PCB) or are mounted in sockets.
In some microcomputers, the entire system is mounted on a single, large, PCB; in others a bus system is used, comprising a long PCB holding a number of interconnected sockets. Plugged into these are several smaller PCBs, each with a specific function - for instance, one card would hold the CPU and its support chips. The most widely-used bus system is called the S100.
The CPU needs memory in which to keep programs and data. Microcomputers generally have two types of memory, RAM (Random Access Memory) and ROM (Read Only Memory). The CPU can read information stored in RAM - and also put information into RAM. Two types of RAM exist - static and dynamic; all you really need know is that dynamic RAM uses less power and is less expensive than static, but it requires additional, complex, circuitry to make it work. Both types of RAM lose their contents when power is switched off, whereas ROM retains its contents permanently. Not surprisingly, manufacturers often store interpreters and the like in ROM. The CPU can only read the ROM's contents and cannot alter them in any way. You can buy special ROMs called PROMs (Programmable ROMs) and EPROMs (Eraseable PROMs) which can be programmed using a special device; EPROMs can be erased using ultraviolet light.

Because RAM loses its contents when power is switched olf, cassettes and floppy disks are used to save programs and data for later use. Audio-type tape recorders are often used by converting data to a series of audio tones and recording them; later the computer can listen to these same tones and re-convert them into data. Various methods are tised for this, so a cassette recorded by one make ol computer
won't necessarily work on another make. It takes a long time to record and play back information and it's difficult to locate one specific item among a whole mass of information on a cassette; therefore, to overcome these problems, floppy disks are used on more sophisticated systems.
A floppy disk is made of thin plastic, coated with a magnetic recording surface rather like that used on tape. The disk, in its protective envelope, is placed in a disk drive which rotates it and moves a read/write head across the disk's surface. The disk is divided into concentric rings called tracks, each of which is in turn subdivided into sectors. Using a program called a disk operating system, the computer keeps track of exactly where information is on the disk and it can get to any item of data by moving the head to the appropriate track and then waiting for the right sector to come round. Twa methods are used to tell the computer where on a track each sector starts: soft sectoring where special signals are recorded on the surface and hard sectoring where holes are punched through the disk around the central hole, one per sector.

Half-way between cassettes and disks is the stringy floppy - a miniature continuous loop tape cartridge, faster than a cassette but cheaper than a disk system. Hard disk systems are also available for micro-computers; they store more information than floppy disks, are more reliable and information can be transferred to and from them much more quickly.

You, the user, must be able to communicate with the computer and the generally accepted minimum for this is the visual display unit (VDU), which looks like a TV screen with a typewriter-style keyboard; sometimes these are built into the system, sometimes they're separate. If you want a written record (hard copy) of the computer's output, you'll need a printer.

The computer can send out and receive information in two forms - parallel and serial. Parallel input/output (I/O) requires a series of wires to connect the computer to another device, such as a printer, and it sends out data a byte at a time, with a separate wire carrying each bit. Serial 1/O involves sending data one bit at a time along a single piece of wire, with extra bits added to tell the receiving device when a byte is about to start and when it has finished. The speed that data is transmitted is referred to as the baud rate and, very roughly, the baud rate divided by ten equals the number of bytes being sent per second.
To ensure that both receiver and transmitter link up without any electrical horrors, standards exist for serial interfaces; the most common is RS232 (or V24) while, for parallel interfaces to printers, the Centronics standard is popular.

Finally, a modem connects a computer, via a serial interface, to the telephone sytem allowing two computers with modems to exchange information. A modem must be wired into the telephone system and you need Telecom's permission; instead you could use an acoustic coupler, which has two obscenc-looking rubber cups into which the handset fits, and which has no electrical connection with the phone system Telecom isn't so uppity about the use of these

\title{
Computerise your business for \\ \(\$ 2\)595
}

To stay in business and succeed in business today you've got to keep moving. And with the powerful and portable Osborne 1 computer you can do just that. Take the Osborne 1 into your life into your office, your factory, your farmhouse or your home. At \(\$ 2595\) it's not much of a risk not to computerise is.

Today's world is a computer world and a tough world. You need to look at the business computer as a necessity and look for value in a business computer. The Osborne 1 has been praised in magazines like Your Computer, and Australian Personal Computer, just for the hardware you get for the price. It has a powerful 64 K RAM memory; full business keyboard with alpha and numeric; two built-in floppy disk drives and a built-in screen - all inside a tough, portable case.

But that's not all. The Osborne 1 comes complete with five software packages included in that \(\$ 2595\) price. The programmes are W'ORDSTAR for word processing with MAILMERGE for automatic letter processing; the CP/M industry-standard operating system; SUPERCALC electronic spreadsheet for accounting and calculations; and two programming languages, CBASIC and MBASIC. It has to be Australia's best value.

The Osborne 1 doesn't need a fancy environment, any desk-top will do. And it's so easy to instal. Just plug it in and turn it on, and it's ready for your business.

Modern computer technology will work for the people who are ready to accept it. the people who are going places faster. Catch up with the changes in business today by seeing the Osborne 1 demonstrated at your nearest ()sborne dealer.

\section*{ESBORNE 1 Australia's best value}

\title{
A BRIEF ENCOUNTER
}

\section*{The US Department of Defence is interested in Space Invaders of a rather more dangerous variety than we micro buffs are used to. It has chosen Ada as the language to implement all future defence software. Mike Parr explains why}

Rarely does the design of a new programming language cause emotional discussion, but the introduction of Ada, the language selected by the US Department of Defense (DoD) is the exception. Basic, Forth and Pascal all have their critics, but the Ada debate is at a different level because of the sensitive area of its use - missile control, nuclear power plants, etc. Here I'll present a brief overview of the language, together with the arguments (sorry - discussions) on its value. I will attempt to be neutral!

\section*{History}

In 1975 the US DoD decided to standardise on its programming language, and put out tenders for a language design to several firms. The winner was eventually called Ada (after Ada Lovelace, who worked with Babbage on an early mechanical computer). The language is based on Pascal, but has important additions to allow for real-time control, and to assist in the production of large software systems by teams of programmers. Because of the area of its use, the handling of errors is also vital - if your Space Invaders game crashes it is merely annoying, but if a fault occurs in a nearby nuclear power station you might be more concerned.

However, before criticising Ada, let's look at some features of the language.

\section*{What is Ada?}

Fundamentally it is a Pascal-like language with these features:
Strong data typing.
Separately compilable 'modules'.
Facilities for the simultaneous execution of tasks.
(An explanation of this jargon will follow!)

However, Ada is more than just a language - it comes with a set of software tools collectively known as APSE (Ada Programming Support Environment), comprising editor, testing software, etc. In fact, APSE can handle all the paperwork associated with a project. Secondly, as Ada is a higher-level language than Pascal, it can be made use of at the program design stage, where one might have used pseudo code or flowcharts. Certainly, a detailed study of Ada will affect the way you think about large programs, and the module and pro-
cedure facilities will encourage a 'divide and conquer' approach, making programs easy to read: after all, programs are read many times during development. (Forth fans please note!!)

\section*{The Ada attitude}

Because Ada is intended for large programs, small examples are not always realistic - however it might be useful to approach the Ada way of thinking (on errors, reliability, etc) by criticising some fragments of MicroSoft Basic. Firstly
10 IF F THEN 30
20 PRINT F * 3.142
These two lines have the following drawbacks:
The intial value of \(F\) is unclear (in fact it is zero).
\(F\) is rather meaningless - we would prefer longer names, eg, FLAG.
In Basic 1 (or -1 in some dialects) means 'true'. When \(F\) is zero, line 20 will be obeyed, and the missing line 30 will not produce an error.
In line 20 we multiply a logical (boolean) variable by a real number. What is the meaning of 'false'*3.142?

This brings out several points (bearing in mind that programs may be used in life-or-death situations) - ie, that incomplete programs should not be allowed to run, and that the type of each variable should be specified by the programmer to allow the compiler to reject misconceived operations. This feature, also present in Pascal and Algol 68, is called 'strong typing' and though it sounds like a good idea, is not popular among all programmers.

Now a subroutine to find the average value of the elements of an array:
1000 REM AVERAGING ROUTINE
\(1010 \mathrm{~S}=0\)
1020 FOR I = 1 TO 100
\(1030 \mathrm{~S}=\mathrm{S}+\mathrm{A}(\mathrm{I})\)
1040 NEXT I
\(1050 \mathrm{AV}=\mathrm{S} / 100\)
1060 RETURN
Again there are drawbacks:
The routine will only work on an array A, of size 100 .
It also affects the value of \(I\) and \(S\), which may be in use elsewhere in the program.
We may not want the user to have the power of editing the routine - it may be dangerous in certain environments.

These problems, present in Basic (and to some extent in Pascal) are all
overcome in Ada. Bearing in mind the 'safety first' approach, let's look at some areas of the language.

\section*{Control structures}

Here at last is a fragment of Ada, illustrating the familiar FOR loop of Basic and Pascal -
SUM: = 0 -- initial value
FOR INDEX IN 1 . . 100 LOOP
SUM: = SUM + A (INDEX);

\section*{END LOOP;}

Upper or lower case characters can be used for variables or reserved words, but I'll stick to capitals to differentiate programs from commentary. The layout is similar to Pascal but note that comments are preceded by ' - '', and that a semi-colon must follow each complete statement.
As well as FOR, we have WHILE, as in:

\section*{WHILE X<11 LOOP}
any statements
END WHILE;
or even more simply, an infinite loop LOOP

\section*{any statements}

END LOOP;
The idea of WHILE is that one collects together the terminating condtions at the head of the loop, though sometimes it is simpler to break out from the loop body; in recognition of this practical requirement. Ada provides an 'exit' statement as in:
LOOP
EXIT WHEN X<0.0001;
END LOOP
-- next statement
We may also use GOTO in such a situation.

As well as repetition, we need statements for selection, and Ada provides IF and CASE, each being more powerful than their Pascal counterpart. The form of an IF is -
IF condition THEN statements
ELSIF condition THEN statements
ELSIF condition THEN statements etc

\section*{ELSE statements}

\section*{END IF;}

Note that this is one statement, not a series of nested IF's. You could choose to nest the statements by writing ELSE IF instead of ELSIF but each IF would need a matching END IF, which becomes clumsy.

The CASE statement at first sight seems similar to the IF, as in
CASE EXAM_MARK ÍS
WHEN \(100^{-}\)-


\title{
Before you buyap
ask it a few per \\ 1. Does it have 16 BIT technology with the ability to expand to up to \(\mathbf{2 5 6 , 0 0 0}\) characters ( 256 K Bytes) of user memory? \\ \\ \section*{2. Does it have external storage which \\ \\ \section*{2. Does it have external storage which extends to \(51 / 4^{\prime \prime}\) or \(8^{\prime \prime}\) diskettes to suit any extends to \(51 / 4^{\prime \prime}\) or \(8^{\prime \prime}\) diskettes to suit any size business?}
} size business?}
}


If the answers to any of these questions is no, perhaps you should be asking yourself a few questions.

Do I want a computer which can expand at the same pace as my business?
Should I settle for a 3 or 4 colour display monitor when the Panasonic JB3000 offers me 8 colours to easily create charts and graphics to target forecasts and trends?

To have the benefit of the best software available shouldn't I have a computer that's totally software compatible with the IBM and many other personal computers?

If I want to control my computer instead of vice versa, don't I need a computer which will offer a full range of training courses at Australia's leading business colleges included in the purchase price?

What other personal computer offers me up to 256 K Bytes of user memory (that's up to four times the capacity of most of our competitors)?

\footnotetext{
Only available from: Myer, Lonsdale Street, Melbourne 601:32:5;): Angus \&e Robertson Business Centres, Sydney 2675255; Bondi Junction, Parramatta, Newcastle, Canberra,
}

\title{
ersonal computer sonal questions.
}
3. Does it have an 8 colour high resolution graphic display monitor and software compatibility with IBM's personal computer?
4. Does it have complete computer training courses at Australia's leading business colleges?


Who produces a full range of business software packages like our exclusive Attache \({ }^{\mathrm{TM}}\) system specially designed to suit Australian business requirements?

Who provides quick economical after sales service all over Australia?
And of course you want the manufacturer you buy your personal computer from to be around for a long time. Panasonic is the world's largest supplier of consumer electronics. So odds are, they'll be in business as long as your business.

Where do you buy the Panasonic JB3000? In the special business centres of some of Australia's leading retailers, Myer and Angus \& Robertson. At a price more than comparable with other brands and with an attractive finance package available.

The Panasonic JB3000. It's got answers for every question you can ask it.

Panasonic JB-3000
Distributed by The Computer Company Pty. Ltd., a division of Singer Australia Ltd.

\section*{ADA-A BRIEF ENCOUNTER}

PUT ("AMAZING"); --put is 'write'

WHEN \(80 \ldots 99=>\) PUT ("GENIUS");
WHEN \(60.8^{2}=>\) PUT ("GOOD");
WHEN 35 . \(59=>\) PUT ("AVERAGE");
WHEN OTHERS \(=>\)-- ie, default PUT ("UNCLASSIFIED"); END CASE;

Ada insists that we must cater for every possible value of the selecting item (ie, EXAM MARK), and also that no two WHEN items include the same values. Moreover, Ada will check this before running the program. In fact, there is an error in my CASE example, because 80 has been specified in two options - the program would produce a compile-time error. You might feel that such a checking facility is impossible, but, to accomplish this, Ada will not allow you to use variables in a WHEN item because variables can be checked only at run-time. The point of all this red tape is a statement which will not inadvertantly fall through to the following statement, and whose effect is not altered by re-ordering the WHEN list.

Finally, one overall point on CASE, IF, WHILE, and FOR is that the Pascal BEGIN/END scheme has been rejected in favour of more meaningful terminators - ie, END CASE, END IF and END LOOP.

\section*{Data types}

This is a major part of Ada, and occupies about 30 pages of the reference manual. Because of this range, I'll examine the more novel features.

Initially, we have built-in types similar to Pascal, eg:
COUNT, I: INTEGER;
SUM: FLOAT: \(=1.0 ;-\) and initialise
A:ARRAY (1. . 100) OF INTEGER;
We may also form 'derived' types as

\section*{in:}

TYPE VOLTS IS NEW REAL;
TYPE AMPS IS NEW REAL;
\(\mathrm{X}, \mathrm{Y}:\) VOLTS: \(=0.0\);
A,B: AMPS: - 1.0;
and can now write statements such as
\(\mathrm{X}:=\mathrm{Y}+6.0\);
\(\mathrm{A}:=\mathrm{A}+\mathrm{B}\);
but not
\(\mathrm{X}:=\mathrm{A}\);
because the items are of different types.
The declaration of numeric types is worth looking at, as it is a considerable advance on Pascal. We can declare a limited range for an integer as in:
TYPE WEEKS IS RANGE 1. . 52 ;
X: WEEKS;

but the novel point in Ada is to apply this to reals, and specify the range and precision:
TYPE FRED IS DIGITS 10
RANGE - 100000 .. 100000;
X,Y: FRED;
Here, we have said that, whatever the size of word on our computer, X and Y must be held to at least 10 digits of precision. Though Ada was not specifically aimed at numerical work, it provides better facilities than Basic, Fortran, or Pascal because programs will run on any machine, irrespective of the number of bits per word.

Arrays are defined in a similar manner to Pascal, but the actual size (within certain limits) can be left until run-time. Because array elements can be of any type (eg, character) and the size of arrays is flexible, we automatically have character strings; and because functions can return arrays as results, we can easily write powerful string functions. A simple example of procedure which prints out every element of an array of any size is:
PROCEDURE ARRAY_PRINT
(A:ARRAY) IS
FOR I IN A'FIRST. . A'LAST LOOP
PUT (A(I));

\section*{END LOOP}

\section*{END ARRAY-PRINT;}

Here we have made use of the reserved words FIRST and LAST, which find out the actual limits of the array index.

\section*{Program units}

An important requirement in a language is that it allows the programmer
a) to split large programs into smaller manageable chunks (eg, subroutines in Basic);
b) to incorporate standard library packages in a program;
c) to write packages which can be safely used by other programmers.
Most languages do not meet these requirements!

Ada provides us with enhanced Pascal-style procedures and functions, plus two types of module called 'packages' and 'tasks'. As usual, I'll concentrate on the differences from Pascal.

Firstly we can 'overload' (enhance the meaning of) the arithmetic operators. As an example, we could overload the ' + ' operator to perform matrix addition. Assuming that the type MATRIX has been defined as a two-dimensional array of any size, we can add corresponding elements by:
FUNCTION " + " (X,Y:MATRIX)

\section*{RETURN MATRIX IS}

SUM:MATRIX;
BEGIN
FOR I IN 1 . . X' LAST(1) LOOP
FOR J IN X'LAST(2) LOOP
SUM (I, J): \(=X(\mathbf{I}, \mathrm{~J})+\mathrm{Y}(\mathrm{I}, \mathrm{J}) ;\)
END LOOP;
END LOOP;
RETURN SUM; -- ie, the result
END "+";
and we may now use ' + ' to work on matrices.

\section*{The package}

For safe programming, the Pascal rules on the scope of variables are inadequate
- ideally we want to provide a set of procedures for other users and also prevent the user from interfering with the internal workings. Consider a TV set - it is sealed up to keep out unskilled hands but can be manipulated to a limited extent by a set of controls on the front panel.

We can see why standard Pascal is unsafe by looking at an attempt to provide a set of 'turtle graphics' procedures. The requirement is to control the heading (angle A) of a

point on the screen by two procedures LEFT( N ) and RIGHT( N ), where N is any angle in degrees. We could try:

\section*{PROCEDURE LEFT (N:INTEGER);}

\section*{VAR A:INTEGER}

Body of LEFT;

\section*{PROCEDURE RIGHT(N:INTEGER);}

\section*{VAR A:INTEGER;}

Body of RIGHT;
Here, the programmer attempts to convey that variable \(A\) is 'private' to LEFT and RIGHT and must be updated only by these procedures. The problem is that as soon as the program exits from LEFT, all local variables (including A) are lost. In fact, such a variable needs to exist throughout the running of the program, and so must be declared at the outermost global level. Unfortunately, such variables can be accessed by any part of the program.

However, in Ada, we can declare a package, typically consisting of a set of procedures and data items, such that variables within it are inaccessible from outside the package, yet keep their value between procedure calls. For turtle graphics, we could write:
PACKAGE TURTLE IS
PROCEDURE LEFT(N:INTEGER); PROCEDURE RIGHT (N:INTEGER); END
PACKAGE BODY TURTLE IS

\section*{A:INTEGER;}
-- followed by the body
- of LEFT and RIGHT

END TURTLE;

\section*{Tasks}

Many computing applications involve the simultaneous action of several tasks, such as writing to several VDUs at once, controlling a chemical reaction, or animating a Space Invaders game while detecting the player's move. Ada allows several tasks (similar in definition to a package) to be run together by highlevel statements, whereas one is accus-

ADA-A BRIEF ENCOUNTER
tomed to dropping into assembly code to deal with interrupts, etc. In Ada, aside from a minimal amount of assembler which may be needed to address novel peripherals, the interrupt is treated as a low-level device that is hidden from the programmer by the language. Indeed, it is interesting to note that Ada, as well as allowing one processor to switch between several tasks in the conventional manner, will also allow the programming of systems in which each task has its own processor-ie, the program is distributed between several machines. In this area of real-time programming, potentially involving dangerous situations, it is realistic to expect errors, either within the programming system itself (eg, division by zero), or errors in results which can be detected by program. Bearing in mind that an error may be detected deep inside a series of nested procedure calls, Ada allows the programmer to specify an action to be taken when a particular 'exception' occurs, and also to control how many partially completed procedures are skipped before normal processingresumes.

\section*{-.. and}

Yes, there's more. Particularly in the area of modules, data types, and input/ output (provided by a set of procedures written in Ada), but if you want more detail, try one of the books listed below. However, bear in mind that it
will be some time before you will be able to run Ada on your micro.

\section*{The debate}
'Coherent'; 'versatile'; 'unwieldy'; 'baroque'; 'almost impossible to implement'; ‘unreliable’.

These phrases come from recent Ada articles in the computing press; the antiAda faction maintains that it has features grafted together to allow for any possible requirement, making it a very large language, difficult to understand and use. If the language is incomprehensible to most programmers, will the programs they produce be of poor quality? Well, the point about complexity is true - many programmers will find Ada difficult, so perhaps the choice of a Pascal-like subset might be appropriate. On the other hand, real-time systems are complicated in any language, so perhaps one which acknowledges their existence is an improvement. However, one of Ada's strongest opponents, Professor Hoare says that it must never be used to implement large software systems because it is unreliable in the areas of error-handling and multi-tasking. Bearing in mind that the DoD has had several false alarms in recent years, such criticisms are indeed serious.

Ada is not likely to appear on today's typical micro system. Currently though one can purchase micro Ada subsets from the USA.

\section*{The future}

Will it catch on? Opinions differ, but it will have to overcome Cobol/Fortran inertia from industry - though some firms involved in real-time programming are keen. Ada subsets (eg, without the multi-tasking facilities) will become more widespread, competing with Pascal on \(\mathrm{CP} / \mathrm{M}\) systems.

Perhaps the personal computer language battle will end up being fought between Unix plus 'C', Pascal, Smalltalk, and Ada?

\section*{Further reading}

The number of Ada books is increasing rapidly, so this is not an exhaustive list. Programming With A da by Wegnerpublished by Prentice Hall. Ada-An Introduction by Ledgard published by Springer-Verlag (also includes the Ada reference manual). Problem Solving With Ada by Mayoh published by Wiley (uses turtle graphics in many of the examples). The Ada Programming Language by Pyle - published by Prentice Hall.

\section*{Where is Ada?}

As Ada compilers are reputed to be six times larger than Pascal compilers, full

\section*{have we ATARI SOFTWARE?}

\section*{YES-}

MOST DEFINITELY
AT


MTERR
GEORGE \& MARKET STREETS.
LOWER GROUND FLOOR, MVER SYDNEY STORE,
SYDNEY TELEPHONE 238-9984, 2315791


Languages
Accounting
Educational
- BASIC - PASCAL - ASSEMBLER - PILOT - FORTH - OS + A BASIC.

Visicalc - File Manager 800 - File It 2 -
Compumax Debtors - Ledger - Creditors - Stock Control.
- Use the Atari's unique speech recording feature to ask questions, give explanations tell stories - See our software such as Analogies - Spelling - Reading Programming Tutorials - Teacher \& Student Packs.

We now hot only have 250+ items for Atari but also one of the best selections of Apple II \& Apple III Software and Hardware in Australia
We also have the most extensive range of \(\mathrm{TI} / 994 \mathrm{~A}\) software and hardware. PLUS Computerwave import a variety of independent TI/994A software. Write for Free Catalogue and Price List.



\section*{Run rings around other Apple users \\ Introducing a new and powerful} Apple-compatible hard-disk drive . . the RO 100 series from Ampec. This drive/subsystem offers a complete add-on mass storage subsystem for the Apple II microcomputer.

Available in capacities from 4 Mbytes to 16 Mbytes, these Saturn hard-disk drives have on-board microprocessors and feature fast access times to give you considerable improvement in system throughput.

This current release of the Saturn subsystem includes DOS 3:3, Apple, Pascal and CP/M software support. With the subsystem installed, and using the supplied support programmes, you can have up to 16 Mbytes of additional disk storage - that's roughly equivalent to
adding 80 Apple mini floppy disk drives to your Apple computer.

Now at ybur Ampec dealer - the Saturn RO 100 disk drives. They really put the icing on the cake - or, if you like, the cream on your Apple pi.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 0E:77 & & 04 & 0 C & 0 A & 12 & ; & \(k\) \\
\hline OE7C & 00 & 00 & 1F & 10 & 00 & ; & 1 \\
\hline OE81 & 1E & 02 & UC & 02 & 1 C & ; & m \\
\hline OE86 & 1E & 02 & 02 & 02 & 1 C & ; & 17 \\
\hline OEEE & 0 C & 12 & 12 & 12 & OC & ; & 0 \\
\hline OE90 & 3E & OA & OA & OA & 04 & ; & \(p\) \\
\hline OEF95 & 04 & OA & 0A & UA & 3E & ; & a \\
\hline OE9A & 1 E & 04 & 02 & 02 & 02 & ; & \(r\) \\
\hline OE9F & 14 & 16 & 16 & 16 & OA & ; & 5 \\
\hline OEA4 & 00 & 02 & 1F & 12 & 00 & ; & \(t\) \\
\hline OEA9 & OE & 10 & 10 & 08 & 1 E & ; & W \\
\hline OEAE: & 06 & 08 & 10 & 08 & 06 & ; & \(\checkmark\) \\
\hline OEE3 & OE: & 10 & OC & 10 & OE & ; & w \\
\hline OEBE & 12 & 12 & OC & 12 & 12 & ; & \(\therefore\) \\
\hline OEED & 26 & 28 & 28 & 28 & 3 E & ; & J \\
\hline OEC\% & 12 & 12 & 1 A & 16 & 12 & ; & 2 \\
\hline OECT & 00 & 04 & OE & 11 & 00 & ; & 4 \\
\hline OECC, & 00 & 00 & IF & 00 & 00 & & 1 \\
\hline OED1 & 00 & 11 & OE & 04 & 00 & ; & S \\
\hline OED6 & 02 & 01 & 02 & 04 & 02 & ; & \(\checkmark\) \\
\hline OEDE: & 15 & 0 A & 15 & OA & 15 & ; & \\
\hline \multicolumn{8}{|l|}{Listing 2 Character codes} \\
\hline
\end{tabular}

The main part of the program is the print routine which is called every time a character is output. It makes use of a look-up table to find the dot patterns necessary to form the required character. Five of these are output for each character printed. A single dot-width is then printed to provide spacing between letters.

The program is written to drive the printer through the Z80 PIO fitted to the Nascom. It uses port 5 for data, bit 0 of port 4 in input mode for the BUSY line and bit 1 of port 4 in output mode for the STROBE line. The subroutine AOUT outputs the character in the accumulator to the printer. It outputs the character through port 5 and then repeatedly checks bit 0 of port 4 until it goes low indicating that the printer is ready to accept data. The data is then strobed into the printer buffer by taking bit 1 of port 4 low and then bringing it high again.

If the printer is connected to the serial port of the computer then lines 14-19 in the program should be replaced by a call to the NAS-SYS external command, DF 59, and the subroutine AOUT should be replaced by calling the NAS-SYS output to serial port routine SRLX; the code for this is DF6F.

The program is presented in two parts: first, the assembler listing of the printer control program (Listing 1), and second, a hex dump (Listing 2) which contains the codes necessary to print the 96 standard ASCII characters supported by the printer in its normal (10 cpi) printing mode. Since all these codes are contained in software, it's not difficult to change the values to redefine single characters or even the entire character set if necessary. To change a character each of the five bytes corresponding to that character should be replaced by codes to form the new character. Bit 0 of the code corresponds to the top dot and the bit 5 of the code corresponds to the bottom dot. As it stands, the program only prints characters in the range 20 H to 7 FH since these are the only ASCII codes normally supported by the printer. To print codes outside this range will need some modifications to the driving software.

Modification of the program to drive other printers with pin-addressable graphies should not be difficult but the exact details will obviously depend on the way that a particular printer controls the print-head.


Listing 1

\title{
WRITING THE SMALL PRINT
}

Andrew May shows how to produce tiny print on a Centronics 739.

The micro-print program was developed as an experiment with the pinaddressable graphics of the Centronics 739 printer. The program will run on either a Nascom 1 or Nascom 2 computer fitted with a Z80 PIO and either NAS-SYS 1 or NAS-SYS 3 monitor. Since the 739 printer does not have programmable line-feeds there is no way of changing the standard linespacing of six lines per inch. The program does, however, give the printer the following facilities: printing using a \(5 \times 5\) character matrix to give 100 (actually 99) characters per line at 12 lines per inch. Printing is at 62 characters per second and lower-case letters have true descenders.

The \(5 \times 5\) matrix is smaller than most popular printers but the text is surprisingly readable, particularly when printing in upper-case. The program makes use of the fact that when printing
in graphics mode the printer uses only the top six pins of the print-head and prints two lines for each line of text. By using the graphics to form a character using only these six pins it is possible to effectively halve the line spacing of printed text. The sixth pin is unused except when printing lower-case descenders; this gives a gap between each line of text since the graphics are designed to run into each other vertically.

The initialisation part of the program puts the address of the main print routine into the user output vector in the monitor workspace - thus, any thing printed on the computer screen also appears on the printer. The program then initializes the PIO to drive the printer and sends the ESC, \(\%, 0\) code to to put it into graphics mode. The system remains initialised until the computer is reset or the printer turned off.



\section*{VECTOR 4}

\section*{VECTOR 4 SPECIFICATIONS}

\section*{Central Processing Unit:}

Processors:
Clock Speed: Memory:

\section*{Video Display:}

Screen:

Alphanumeric:
12 inch high contrast green phosphor 20 KHz Horizontal, 60 Hz Vertical
24 Lines x 80 characters High resolution \(16 \times 13\) dot matrix
High Resolution
Graphics:
\(640 h \times 312 v\) pixels \((B / W)\)

\section*{Gray Scale Graphics:}

8-bit Z-80B and 16-bit 8088
(single or multiprocessor operation) 5.1 MHz

128K Dynamic RAM Standard Expandable to 256 K
\(160 \mathrm{~h} \times 312 \mathrm{v}\) pixels, 16 levels of gray 320h \(\times 312 v\) pixels. 4 levels of gray
Color Graphics: External RGB Monitor
\(160 \mathrm{~h} \times 312 \mathrm{v}\) pixels, 8 colors
\(320 \mathrm{~h} \times 312 \mathrm{v}\) pixels, 4 of 8 colors
Keyboard:
Detached, with 8035 auxiliary pro-
cessor. Capacitance keyswitcin with
91 keys, including 15 programmable special function keys, cursor control keys, and 10-key numeric pad for rapid data entry.
Coiled cable with Interface

\section*{Input/Output:}

Serial Keyboard
Centronics Parallel Interface
Qume/NEC Parallel Interface
RS-232 Serial Printer Interface
RS-232 Communications Interface
RGB color signals
Programmable Tone Generators and
Speaker
S-100 expansion slots

\section*{Disk Drives:}
\begin{tabular}{lll} 
Type of Disk: & \(51 / 4^{\prime \prime}\) Floppy & \(54^{\prime \prime}\) Winchester \\
Total Capacity: & 630 Kilobytes & 5 Megabytes \\
Transfer Rate: & 250 Kilobytes/sec & 5 Megabytes/sec \\
Rotation Speed: & 300 RPM & 3600 RPM
\end{tabular}

\section*{Configurations:}

Model 4/20
Model 4/30 One floppy drive and one Winchester hard disk drive

I'd like to know more aboul vector computers
Please send me additional intormation
Please tell me where I can get a demonstraton

Name \(\qquad\)
Title
Company \(\qquad\)
Address. \(\qquad\)
Nalure of Business
Planned Applicalions.
Matt 10 Fiona Dicker, Dicker Data Projects Pty. Ltd.

\section*{\$5295 \\ VECTO THE COMPANY COMPUTER.}

\section*{DEALER ENQUIRIES INVITED}

\section*{Hewlett-Packard put it all together.}

With each HP-85 purchased 16 K meme module and
receive free a

You can spend a lot of time and money building up your own computer system.

Or you can buy the HP 85 .

It has everything you need in
a compact, portable unit.
Just plug it in and start programming in easy BASIC language.
You can analyse your data with the HP 85 's integrated graphics.
At the touch of a key, it gives you hard copies via the built-in printer.
And in case you forget, the HP 85 offers 210 kilobytes of Random
Access Tape Memory.
Other features include powerful, time saving HP Software for both business and scientific applications.

There's also a degree of friendliness in the HP 85, unrivalled in a computer of its size. Like helpful error messages and automatic syntax checking.

Of course you may eventually wish to expand your HP 85 system. An HP interface lets you plug in up to 14 peripherals without disassembly.

To locate your nearest Hewlett-Packard dealer, call Hewlett-Packard.
Sydney: 8871611; Melbourne 8906351; Adelaide: 2725911; Perth: 3832188; Brisbane: 3698022; Canberra: 804244.

\title{
BENCHTEST \\ CARDBOX
}

\section*{Kathy Lang gets to grips with an electronic card index system.}

This month I'm reviewing a CP/M based package which is amed, not at general purpose data management problems, but at one particular, very familiar, tried and trusted card index stored on a micro, with most of the features you have always wanted on your manual card index but couldn't have, because of the limitations of pieces of card.

The package allows the user to create 'card' formats on the screen, put data into the card index from the keyboard or from other files, have the information indexed on any word specified, and display all or part of the data on the screen or printer. It doesn't provide any facilities for doing calculations on the data, either within the records or by aggregating across records, except that it displays the numbers of records found when a particular search is made. So Cardbox is clearly aimed at textual applications - bibliographies, descriptive records such as medical case histories, and so on, rather than at areas where the manipulation of numbers is an essential part of data management.

\section*{Constraints}

The orientation of the package is reflected in its limitations. Cardbox allows you quite generous limits on the numbers of records in a file \((65,500)\) and on the number of characters in a record (1404), with the usual \(\mathrm{CP} / \mathrm{M}\) limitation of 8 megabytes on total file size, but the package imposes tighter constraints on the number of fields in a record (maximum 26). Although the layout of a single 'card' or record must be described on one display screen, fields may run over more than one line - and indeed the record could consist of just one very large field if you wanted. Any word or phrase can be indexed, but each indexed item may not exceed 32 characters. Cardbox can deal only with one file of information at a time, so you can't link records across files.

\section*{Input and updating}

To put information into a Cardbox file, you must first design a screen format for the data. This format is used whenever changes are made to the file. When using the search facilities you can display records using either the initial format or other formats which can be created for particular purposes; providing 'overlay' formats to display the
'draw' characters as they came out on my printer. The items AAAAA, BBB . . etc, are the data fields. Since Cardbox doesn't have any calculating facilities, it doesn't need to distinguish different data types but it does need to know the maximum length of each field. To describe a field, you give it a caption, which is a field label, of up to 16 characters, an abbreviated field name of two letters which you use to describe the field when editing records or searching them, and a single character identifier which is used when 'placing' the field on the screen during the formatting operation. This is the only time the single character description is seen by the user, which is just as well as I found the use of one character for a field when laying out the format, and two characters at other times, very confusing as both are displayed on the screen while you are adjusting screen formats. So in my example the variable System 3 has the identifying letter \(P\) and occupies three positions at the point on the screen which follows its caption. None of my fields spread over more than one line, but if one does, you just mark the beginning and end of the field, and Cardbox treats those two points as diagonally opposite corners of a box which is to contain the field. So if System3 had needed two 'words' up to three characters long in the same position, Cardbox would have shown that as
PPP
PPP
and I could still have had the field called Rating exactly in the position shown on the figure.

When you set up the screen format, you also say how you want the field indexed. There are four possibilities: the


\section*{Fig 1}


Enter command: SELECT SU/
Enter the word to be found (hit RETURN at end) "?" will match any letter, " + " any sequence of letters.

Fig 2
words in a field may always be indexed, or never indexed, or indexed unless the user overturns this decision when the data is input, or indexed only if the user asks for it when the data is input. For either of the optional indexing possibilities, you can choose whether to index or 'unindex' all the words in a field or only some of them. You can also index phrases formed by hyphens - these are indexed both as phrases and under the words which form the component parts of the phrase. All these operations are confirmed when putting the data in with the use of the TAB key, and if you have the right kind of terminal then indexed words and phrases are highlighted on the screen. Cardbox will not allow you to put data in a field beyond the confines which the format allows. If you have records which contain many duplicate fields, you can take a copy of the current record and edit only those fields which have changed, then store it as another record.

In most data management systems, once you have defined the record structure it is hard to change it, and this usually involves copying the whole file out to a new structure. With Cardbox it's very easy; you simply change the main screen format for the data file and Cardbox will show blanks as the value of that field for existing records until you put some data into them. However, if you decide that, while you don't want to change the record structure, you do need to index a previously unindexed field, this is much harder, and involves copying the file out in an external format, inserting an index flag before the desired field in each record, and copying the data back into Cardbox. The obvious way round this is to index everything from the start, but this might be expected to slow data entry down; I didn't try it. The same process of flagging index fields and copying the data file into Cardbox can be used to translate any ASCII sequential file into Cardbox format, so it's possible to 'port' data from other programs.

Editing records is achieved by retrieving them using the selection mechanism described later and either modifying or deleting them. During amendment, the cursor can be moved around the record on the screen using control functions much as in the process of formatting the screen, using Wordstar-like control characters.

\section*{Displaying data}

Records in any file can be displayed using either the screen format employed for data input, or one of any number of different formats set up for particular purposes. These formats do not have to refer to every field in the record; if a field identifier is not used then Cardbox simply ignores the field for display purposes. So, if records consist of a mixture of confidential and 'open' information, then different overlays can be designed so that people with different roles can access only the parts of the record they need for their particular purpose.

\section*{Printed reports}

Exactly the same mechanism is used for designing printed reports and for screen displays. This has the advantage that


Fig 3
\[
\begin{array}{cc}
\text { CARDBOX(U) } & \text { File }=A: B O O K S . F I L
\end{array} \quad \text { PRINT }
\]

> Level 1 - SELECT SU/ESSAYS - 25 RECORDS SELECTED
> Level 2 - EXCLUDE SU/TRAVEL - 20 RECORDS SELECTED
> Level 3 - SELECT AU/S+ - 3 RECORDS SELECTED

Fig 4
you only need one format to get going, and the disadvantage that even if your printer will print more than 80 columns wide, you can't exploit that. (On reflection, as a founder member of the 'A4 is quite big enough for human readers and briefcases' club, maybe that isn't a disadvantage after all.) In addition to the PRINT command, which prints out all the records in the current selection (see below), using a specified format, you can also take a quick copy of the screen at any time with CTRL-P. This could be a very useful feature, not just for data but for taking copies of screen formats and of instruction displays for teaching - I produced all the figures for this article in this way.

\section*{Selection}

Cardbox has an exceptionally powerful and flexible set of selection facilities, always remembering that we're dealing with textual data. There are two groups of selection commands, one for use on indexed fields and the other which can operate on any field. Selection is by identity only, (with case ignored) but you can use wild characters: '?' to match a single character, ' + ' to match one or more characters. For instance, if you ask for all records in which a particular field matched the word 'PART', Cardbox would select all those records where the specified field matched the word 'PART' or 'part' (or, for that matter, 'PaRt'). A request to match on 'PART?' would match any five-character word starting with 'PART' or 'part', such as 'parts', 'party', and so on, while a request to match' 'PART+' would match all those found by 'PART?', plus words like 'partition', 'particular' and so on. Wild characters can of course be put in the middle of words too, so a request to match 'P??TION' would match words like 'portion', while 'P+ TION', would match 'portion' but also 'potion', 'partition', 'parturition', 'petition'

When you request matching of a field, you name the field with the two-character abbreviation specified in the screen format, not the full caption - but Cardbox helps you to remember what fields
are called by displaying all the abbreviated field names at the bottom of the screen. It also gives you a reminder of what commands are available at any one time and prompts you for further input when a command is given. Figure 2 shows the screen after specifying the data file to use (a file of bibliographic information which is supplied with Cardbox and is used in the tutorial manual) and requesting the field Subject to be used for a selection.

The next step is to enter the key fields for searching. In my example I chose the subject 'essays'. Cardbox found 25 records that matched the specification and displayed the first on the screen as Figure 3 shows. The main point to note about this figure is that the level number has changed from 0 to 1. Cardbox uses the term 'level' to in dicate the depth of search to which the selection has gone, meaning the number of selection, inclusion and exclusion commands that have been given. Selection simply chooses all the records in the current set (available at the current level, in Cardbox terms) which match the field value specified. This process can be further modified in two ways. The INCLUDE command allows you to extract a further set of records from the whole file - so it's really a way of having an OR function at the zero level. I might, for instance, have wanted to select titles covering either travel or biography, and I could have asked Cardbox to SELECT travel and INCLUDE biography. The third command for choosing subsets is EXCLUDE, which removes from the current set any records with a field value matching the specified value. So SELECT and EXCLUDE are the inverse of each other and operate on the current set or level, and INCLUDE always operates at the zero level of all the records in the file.

The possibilities for selection are quite wide, because Cardbox allows you up to 99 levels of selection. This can get pretty complex, and thus the HISTORY command, which spells out how you got to the current level, is an extremely valuable option. I've shown in Figure 4 the history of a search which went on from the SELECT shown before through

\section*{ \\ TLI . LECiLi \\ CDMPUTERS} The Best for Less


Advantage 2Q-64K \(\$ 4758\) Advantage 5M-64K .... \$7852 Horizon 2Q-64K \(\$ 4495\) Horizon \(5 \mathrm{M}-64 \mathrm{~K}\) \(\$ 7138\) Horizon 18M-64K ..... \(\$ 9518\)

\section*{A.D.E. LSI-11 SYSTEMS}

11 D.E.C.-compatible minicomputers based on the LSI11-02, LS111-23, or Dataram M23. Choice of Winchester, floppy or S.M.D. . . . . . . . . . . . . \(\$\) call


\section*{-}

\section*{D.E.C. PERSONAL COMPUTER OPTION}

Add to your VI100, or available complete with VT100.
VI18X-CC CP/M option \(\$ 1712\)

\section*{-}

We also have a wide range of disk and diskette drives and sub-systems available.


\section*{TELEVIDEO}
\begin{tabular}{|c|c|}
\hline 910 & \$ 895 \\
\hline 925 & \$1495 \\
\hline 950 & \$1895 \\
\hline Intelligent One & \$2350 \\
\hline Graphics Option & \$1595 \\
\hline
\end{tabular}
Graphics Option ........ \(\$ 1595\)
ADE100 . . . .............. \(\$ 1295\)
D.E.C VT100AB . . . . . . . \(\$ 2227\)
D.E.C. VT101A5 ....... \(\$ 1750\)

T640 Graphics option .. \(\$ 2318\)
\begin{tabular}{|c|c|}
\hline Teleray 10 N & \$1695 \\
\hline Teleray 10M & \$1695 \\
\hline & \\
\hline D.G. D200 & \$2684 \\
\hline D.G. D400 & . \(\$ 3136\) \\
\hline D.G. D450 & \$3824 \\
\hline D.G. G300 & \$4905 \\
\hline
\end{tabular}

FULL TECHNICAL BROCHURES AVAILABLE ON REQUEST
\begin{tabular}{l} 
* Ask now for your new \\
A.D.E. catalogue. \\
* Prices shown do not in- \\
clude sales tax. \\
* Full maintenance and \\
extended warranty \\
available. \\
\\
* Quantity discounts \\
available. \\
\hline
\end{tabular}

\section*{DEALER ENQUIRIES WELCOME}

\section*{PRINTERS}

OKI ELECTRIC

\begin{tabular}{|c|c|}
\hline ML80 & . \$ 525 \\
\hline ML82A & \$1099 \\
\hline ML83A & \$1395 \\
\hline ML84 & \$1795 \\
\hline 2350 . 350 c.p.s. & \$2995 \\
\hline
\end{tabular}

\section*{QUME}

S9/45 ROLP ............ . \(\$ 3120\)
S9/45ROFPME .......... \(\$ 3660\)
S9/35 KSR . . . . . . . . . . . . . \(\$ 1995\)

\section*{D.E.C.}
\begin{tabular}{|c|c|}
\hline LA12C & \$2595 \\
\hline LA12D & \$2245 \\
\hline LA34AA & \$1345 \\
\hline LA34RA & \$1295 \\
\hline LA34DA & \$1095 \\
\hline LA100RA & \$2536 \\
\hline LA100ZA & \$3080 \\
\hline LA100AB & \$3275 \\
\hline LA120GA & \$3149 \\
\hline LA120RA & \$2771 \\
\hline LA50RB & \$ 996 \\
\hline
\end{tabular}

\section*{T.I.}
\begin{tabular}{|c|c|}
\hline 743 KSR & \$1500 \\
\hline 743RO & \$1250 \\
\hline 745KSR & \$2100 \\
\hline 810 & \$1890 \\
\hline 820KSR & \$2650 \\
\hline 820RO & \$2450 \\
\hline
\end{tabular}

Enquire about our range of Plotters and Digitisers.
P.O. BOX 422, CLAYTON, VICTORIA 3168, AUSTRALIA. PHONE: (03) 5443444. P.O. BOX 341, PENNANT HILLS, NSW 2120, AUSTRALIA. PHONE: (02) 848 8533. Adelaide: 46 4062. Perth: 387 6055. Hobart: 34 4522. Canberra: 581811 . Brisbane: 352 5788. Newcastle: 69 4325. Wellington: 69 3008. Auckland: 54 4224. Christchurch: 43001. Darwin: 81 2712. Singapore: (65) 4494433. Bendigo: (054) 42 4322. Wangaratta: (057) 216443.

CARDBOX an EXCLUDE and then another SELECT.

Selection is flexible in some ways and restricting in others; the most noticeable restriction (given thatidentity is the only comparison possible, because the data is expected to be textual) is that there is no real OR mechanism below the first (zero) level. Having requested travel books, it isn't easy to request all those about Greece and Italy, say without writing out a subset of records to another file and then reading them back. Of course, you could get round that particular example by SELECTing Greece, INCLUDing Italy, and then SELECTing travel - but you have to think about the order and there would be some combinations in which only creating a subset file would give the desired results.

The restriction of matching by identity (albeit with wild codes) might be limiting where an application involved searching date fields, when it can be useful to be able to say 'find all the records where "date of last appointment" is more than six months ago.'

\section*{Sorting}

Cardbox doesn't have any facilities for sorting, and it keeps the data in an arbitrary order, retrieving it in the order in which it is filed. So if you wanted your books (say) listed in author order, you would have to use another program, such as Supersort, to do it.

\section*{Tailoring}

Cardbox can be preset for one of quite a number of commonly available terminals. If yours is not one of these, it can still be adapted fairly straightforwardly, though I did have some problems with items to which I did not want to give a value. You can't then tell Cardbox that your terminal has arrow keys for moving the cursor about, or give it information about the terminal's highlighting capability. Apart from adapting it to match your terminal, Cardbox doesn't have any tailoring facilities. The feature that I missed in this area was the lack of any ability to store sets of search and select commands in a file. Often one wants to do quite a complex search regularly as data is updated, and it is tedious to have to retype the instructions every time.

\section*{Stability and reliability}

Cardbox is the first system I've come across with explicit facilities for repairing a set of data which has become corrupted - either through a system glitch such as power surge, or through mishandling. I didn't need to use these, I'm glad to say, but I suspect they could be very valuable in a real-life application over a period.

\section*{Housekeeping}

Within Cardbox you can copy and erase files, so the only operating system functions required are disk formatting and directory listing information. Card-
box also provides some analysis facilities to give the user aggregate information about the data, to help in tasks such a file sizing.

\section*{User image}

Cardbox is a menu-driven package, using two ways of specifying what function to carry out next. At the start, the screen displays a set of options as shown in Figure 5.

To get different options, the arrow pointing to the lines of instructions is moved until the correct pair is identified. Once in to the data, permitted commands are shown on the bottom of the screen as shown in Figures 1-3, and two-letter abbreviations (which are filled out by Cardbox) used to give the necessary instructions. I found this approach very helpful, especially the display of what commands were permitted at any one time. My reservations were limited to the facilities for setting up screen formats, which have some good features and some unfortunate drawbacks.

The good features include the use of the cursor to move around the screen, defining starts and ends of fields and elements such as lines around 'boxes' of information simply by 'pointing' through pressing a single key when the cursor is in the desired position. Cardbox also tells you what row and column you're on, so you don't have to do anything primitive like counting the number of times you've pressed the cursor key to get a field the right length.

One drawback of form design l've already mentioned - the confusing use of one-letter symbols for fields whose names are abbreviated to two letters, so each field has three 'names' during format definition. I should have preferred the use of a single field definition character for all fields - the use of a caption makes it quite clear which field is intended. Another silly irritation is that the command to insert a character in a position on the screen actually inserts a column - ie, an extra space in every row on the screen - so to juggle around with the spacing on one row after you've set up the rows below involves adjusting them, too.

But these are minor irritations which do little to detract from a generally well-designed package. The accompanying documentation is also written to a high standard. There is an introductory manual for complete beginners and a reference manual which is actually two documents in one - I suspect that, as they say, the last came first since it is in
the usual computing mode with numbered sub-sub-sections and so on. The documenters have done an extremely good job in extracting from it the introductory and main reference manuals, which contain all you need to know in a digestible format. I only found one real howler - both manual and screen tell you that functions marked with a star are not available when displayed, then tell you to go ahead and invoke one that happens to be starred! It only occurs once, though, and otherwise the instructions are clear and well-laid-out.

I do wish, though, that people did not feel it essential to put at the front of the tutorial manual the information about configuring the terminal. Nearly every package manual does it, and it must be very confusing for the first-time user. Even in a package which is sold by mail order, it should be possible to say something like 'If this is the first time Package Z has been used on your system, it must be set up for the purpose - see page \(x x x\) in the Reference Manual if you need to do this', to avoid confronting the absolute beginner with hex codes unless they really need them. I expect this aspect of the manuals grated on me more even than usual with Cardbox because the documentation is otherwise so well thought out.

\section*{Conclusions}

Cardbox is a package designed for a particular purpose, namely the automation of card indexes. Within that aim, it succeeds extremely well. Its facilities for indexing and searching are good and very fast (from my initial tests the fastest of any package I've evaluated so far) and the user image of the screen displays and the documentation are in the main excellent. Users I've spoken to particularly liked the ability to index individual words in prose text, the flexibility of the screen design, and the power of the selection facilities. Set against that are the drawbacks: Cardbox has no sorting facilities of its own, cannot store searches for subsequent re-use and does not let you change an unindexed field into an indexed field easily - and of course it has no numerical facilities at all, nor the ability to test for ranges, in date fields for instance. If these limitations aren't a serious drawback, then for bibliographic applications, records (such as medical case histories) containing continuous prose which need part indexing, and the like, at the asking price of \(\$ 298\) Cardbox would be a very good buy.
```

cardbox
PRIMARY FUNCTIONS:

```

\section*{SECONDARY FUNCTIONS}
\(\Rightarrow\) Use
Analyse
create
Repair

\section*{WCTMO EXCHANCE}

Our new micro 'trading post' will be published monthly in Direct Access. All Micro Exchange ads must be submitted by readers on the appropriate form (or a photocopy). Maximum of 30 words. Print one word per box, very clearly. Contact name and telephone number/s must be included in the 30 words. All ads must be accompanied by a fee of \(\$ 5.00\) for Australian Personal Computer or \(\$ 7.50\) for inclusion in both Australian Personal Computer and Australian Business Computer. Make cheques or Postal Orders payable to Micro Exchange. Ads cannot be repeated (unless sent on another form) and we cannot guarantee to print an ad in any specific issuc. Please help the typesetter by printing very clearly.
Send your form to: Micro Exchange, P.O. Box 62, Middle Brighton, Vic 3186.

UICTORIA

TRS BO BUSINESS COMFUTER SYSTEM, OUAL DISC ORIVE, \(\angle B K\) RAM, CDMPLETE RANGE DF SIF TUARE, GREEN SCREEN AND SYSTEMS OISC. MAINTENANLE AVAILABLE \(\$ 200\)
\(\mathrm{AH}:(03) 5783445 \mathrm{BH}:(03) 3282988\)
OSBORNE I, \(64 K\) MICRO, NEW IN BOX, COMES WITH GUARANTEE AND ALL ASSOCIATEO SOF TLARE, NEVER BEEN USED. MAINTENANCE AUAILABLE \(\$ 1990\)
AH:(03) \(578 \quad 3445 \mathrm{BH}:(\mathrm{D} 3) 3282988\)
SHARP P.L. 1211 POCKET COMPUTER, CASSETTE INTERFACE, INSTR BASIC AND \(3 D O\) PAGE APPLICATION MANUALS. EXCELLENT CDNDITIDN \(\$ 150\)
(03) 8906456

COMPUEOLDUR II COLOUR COMPUTER, 32 K COMES WITH DISC ORIVE AND COLOUR MONITOR COMES WITH MANY DISES
\(\$ 1,850\) O.N.O. (03) 8906456
COMPUTER TELETYPE ASR 3B, VERY GUOD CONDITION, COMES WITH KEYBDARD, PRINTER, TAPE READER ANO PUNCH, RS232 INTEPFACE, ALSO FULLL SET OF MANLAALS \(\$ 700\)
(03) 81B 5711

SHARP P.C. 1211 WITH PRINTER CASSETTE INTERFACE AND CARRY CASE, AS NELU IN BOX \$295 (03) 878 B895 MR PCCK

COMPUTER PRINTER TELETYPE ASR 35 WITH FULL TAPE FACIL ITIES AND ACOCESS \$140 (03) 8773409 MR CAMR

SINCLAAR \(2 \times 80\) MICRLD PRLCESSOR, 16 K RAM, 8K RUMM, MANLIALS E.TC \(\$ 230\)
(03) 4172774 MIR STEWART

DICK SMITH SYSTEM BO MK. II NEUS GCAP BUSINESS COMFUTER SERIAL NO 810311932 YIOEO MDNITOR \& EXPANSIUN UNII, TOTAL OF 32 K OF RAM MEMORY, \(2 \times 40\) TRCK FLIJPPY DISE ORIVE WITH OAISY CHAIN CABLE AND POUER SUPPL.Y, \(1 \times 132\) CDLLIM PRINTER LUI TH CAELE, IN FULL OPERATING ORDER \(\$ 2,500\) (03) 3760728 MR CAMERON

COMPUCOLDUR 2, BRILGIANT COLDUR, BASTIC/FORTRAN, \(36 K, 5\) INCH DISC ORIVE, MODE PROGRAMMINE OISCS ANU MANUAL.S AS NEII \$1, GOO (03) 4693130 MR BURNS
GISBORNE COMPITER, GムK, 2 SINGIE SIDED/SINGLE DENSITY DRIVES, COMLS WI TH CBASIC/MEASIC/UIORDSTAR/MAILMERCE AND SUPEERCALL. ALL MANUALS PROVIDED \(\$ 1,850\) \(\mathrm{AH}:(03) 4194071\) BH: (03) 419752 B MF BURN

COMPUTER, TELETYPL MLIDLL 33 ASR, COMES WI TH PAPER TAPE PUNCH AND READER, RSZ 32 INTERFACE. CDOO CONOIIION \(\$ 285\)
(03) 792.9301

MILRO COMPUTER SYSTEM 2650 X EENTRAL DATA, IDEAL SET UP FOF ENTHUSIAST, 1EK DYNAMIC MEMORY, BDARD EXPANSION 10 65K, 5100 BUS/BOARO STANDARD, 53 KE YBAORL POLIE:R SUPPLY, inClludes sdr Tware, tapes, ETC. COST \$1,200 NDU \$400
(03) 7BS 1230 MF SCHUBERT

16K RAM - \(\$ 80\)
ЗK RAM - \(\$ 50\)
PROGRAMME EENERATOR - \$60
PROGRAMME SOUND GENERATOR - \$00
NATIONAL SINLLAIR \(2 X\) USERS GRDUP
P.D. BOX 148, GLEN UAVERLEE 3150

TRS 80 MICRO CDIMPUTER SYSTEM, LEVEL ? BASIC, 16 K MEMORY FULL UARRANTY NEVER USED, COST \$890 SELL FOR \$700. INCLUOLS CASSETTE RECORDER FOR ADOES MEMORY AND PRDCTRAMME MANUAL.S.
(03) 3370825 MR ZAFIRIS

COMPUTER, OLIVETTI PAPER TAPE READER FIRR READING 7 OR 9 TRACK PAPER TAPE, IPTICAL SYSTEM COMPATI日LE TO MOST OTHER SYSTEMS \(\$ 110\) (03) 3116670 MR DEVERS
COMPUTER \(2 \times 81\) 4K RAM ANO BK ROM COMES WITH ALL LEADS AND MANUALS ETC EXCELLENT CONDITION \(\$ 210\) (03) 3116670
\(2 \times\) SPECTRUM (UEBSTER) PDP11 - G4K SINGLE SIDED/ODUELE DENSITY DISKETTES \(\$ 2,500\) EACH MAINTENANCE AVAILABLE (0.3) 5318788

It \(99 / 4\) KEYEGIARO AND MANUAL \(\$ 100\) (133) 75877983 MR PINE

APPLE II UIITH UNE DISK DRIVE AND BLACK ANO LUIITE MONITUR AND SOFTUARE AND MXBO FFT. \$2,8SO PETER MONGER
\(\mathrm{BH}:(03) 5199121 \mathrm{AH}:(03) 5292657\)
QUANTITY OF NEU PERTEC DRIVES, 40 TRACK SINCLE SIDEO 16.3 K C.APACITY \$220 EACH. MAINTENANCE AVAILABLE (03) 890 1770

8" PERTEC FLOPPY DISK DRIVES (USED) \$200 MAINTENANCE: AVAILABL.E (03) B90 1770
1.AJG DECLURITERS (USED)
\(\$ 500\) MAINTENANCE AVAILABLL (0.3) 8901770
SENDATA 700 SLRJES ACOLSTIC: COUPLER \(\$ 20 C I\) MA.TNTENANCF AVAILABIE (033) 509 5844

\section*{QUEENSLAIU:}

2732 QUAL CATRTOCE CHARACTER SET FOR OSI CONTAINS MEDIUM RESOLIJTIUN GRAPHIC: BLOCKS ANIJ AISO EASIER TO READ MRINT CHESS PIELES ANO CAMMON CHARACTERS ALSU MAINTENANCE NUAILABLE (075) 654354 MR BERNIL WILIS

BASIC 4 EPROM FOR DSI CIP CDNTAINS HIGH SPEED CASSETTE L.OAD/SAVE/VERTFY ROUTINES FUR BASIC ANO M/C PROGRAMMES MAINTENANCE AVAILABLE \(\$ 12.00(0 \%) 2666229\)

SOIJND GENERATOR IN CASE FOR DSI, SOUND EFFECTS LIKE SIREN, MOTOR, PHASDR, MACHINE GUN, ORGAN NOTES AND MANY OTHER PDSSIBLE EFFECTS. \$50 D.N.O.
(07) 266 6229

TRS-BO VIIICE SYNTHESISER WITH MANLAL AND OEML PROGRAMMES. SUITE TANDY MODEL 1, LUI TH INTERFACE TO TRS MODEL. III, SYSTEMBD DR APPLE \(\$ 200\) (07) 3988361

SUUTH AUSTRAL IA

EPSITM EXTENDER, A SIMPLE WAY TO ADO ON AN EXTRA GK OF RUM TO YOUR OSI CDMPJJTER. BARE BOARD ONLY MAINTENANCE AUAILABLE \(\$ 9.50\) (08) \(25 B 6647\) MR PATTERSON

NEW SOUTH WALES

DISC CONTROLLER BOARO FOR OSI TASKER BUS BARE BUARO ONLY COST \$25 SELL. \$15
(02) 6657763 MR REAO

ANADEX DP-8000 PRINTER NEAR NEW \(\$ 650\) MAINTENANCE AVAILABLE (02) 5708344

SANDERS MEOIA \(12 / 7\) PRINTER WITH SINGLE SHEET FEEDEA \(\$ 2,900\) MAINTENANCE AUAIL (02) 5708344


THE EDUCATION SPECIALISTS 250 Parramatta Rd., Annandale, N.S.W. Phone: (02) 569-5188.

\section*{COMPUTING IS NO JOKE!}


Have you ever had the feeling your computer is laughing at you?
Does it resist all your efforts to get down to serious business?
A subscription to ABC can help show you how to master your computer and get the most back from your investment. If you have not yet bought a system, we can show you the pitfalls.

Either way, if you are serious about business computing, can you afford not to subscribe to ABC?

Enough questions. Now get down to the answer by filling in the form below.

I would like to subscribe to Australian Business Computer for 1 year (10 issues)
\(\square \$ 35\) within Australia \(\square\) Aust \(\$ 45\) overseas surface mail \(\square\) Aust \(\$ 100\) overseas air mail
\(\square I\) enclose my cheque/money order, made payable to Australian Business Computer for \(\$\)
\(\square\) Please invoice my company
\(\square\) Please charge my Bankcard
Bankcard No
Expiry Date
Signature

Name
Address

\section*{Postcode}

Please send this order form with your remittance to Australian Business Computer, Subscriptions Department,

\section*{ETCRO EXCHANGE}
```

FEENTRONICS 739 (NEW) \$9000
MAINTENANCE. AVAILABLE (O2) 5%O 8344
II-810, PRINTER \$2,000 NCHU \$1,200
(02) }922397
IMPACT OATA PRINTER \$E00
(02) 922 3977
CENTRONICS 737 PRINTER \$900
(02) 922 3977
SOROC TERMINAL. AS NELU IN BOX \$10OO
(02) 922 3977

```

NORTHERN TERRITIORY

COMMODORE VIC 20 MICRO COMPUTER
COMMODORE VIC 1540 OISK ORIVE COMMODORE UIC 1515 CRAPHIC PRINTER INCLUDING MEMORY EXPANDED TO 32 K \(\$ 2,034.00\) (089) 523027

COMMIDDORE: VIC 20 MICRO COMPUTER COMMOOORE DATASE TTE
GAMES CARTRIDCE (ANY CHOICE)
FACK DIF SIX RECREATIONAL. CAMES
\(\$ 513.00\) (089) 52 302?

UNE HEULETT PACKARD LOMPUTER DESKTOP
MINI MODEL \(9925+\) ROIMS. ANY EJFFER
(009) 52. 3027

ONE HEULETT PACKARD gBg5M DISK ORIVE ANY OFFER (O8S) 5? 3027

ONE HEULETT PACKARD 9871 DAISY LAHEEL PRINTER ANY OFFER (089) 52 3027

Please find enclosed my cheque/P.O. for \(\$ 5.00 / \$ 7.50\) for the following ad.


NAME
ADDRESS.


\section*{LAZING AROUXD}

\section*{Quickie}

What is special about the number \(8,549,176,320\) ?

No answers - no prizes.

\section*{Prize puzzle}

A difficult puzzle this month, since it's Christmas and everyone will have extra leisure time to work at their micros.

Every odd number, except two, between 1 and 8999 is either a prime or the sum of a prime and twice a square.

Thus:
\(321=19+2.1^{2}\)
\(27=19+2.2^{2}\)
What are the two exceptions?
By the way, remember, postcards (or backs of envelopes) only. All other entries go straight into the bin - you have been warned.

\section*{September prize puzzle}

What a lot of coconuts -- and what a lot of entries! Well over 100 replies were received for this puzzle, which is a variation on an old chestnut. Answers received ranged from two coconuts (yes \(-t w o)\) to millions and millions.

The correct answer is 279,931 coconuts, which is the smallest positive solution. Although a solution by micro isn't too difficult, an analytical approach can also be used. Since -5 is clearly a solution, then adding or subtracting multiples of \(6^{7}\) (six men, seven share-outs) to -5 gives all possible answers. Hence the smallest is \(-5 \times 6^{7}\) which is 279,931 .

The winning entry came from P Drapala of Eight Mile Plains. Con-

gratulations, Mr Drapala, your prize will be with you forthwith - if not sooner.

Capple computer authorired dealer

\section*{SUPERB AFTER}

SALES
SERVICE
FROM


THE EDUCATION SPECIALISTS
250 Parramatta Rd., Annandale, N.S.W. Phone: (02) 569-5188.

\title{
MICROPRO ON SIGMA/OKI if800 \\ PERSONAL COMPUTER
}

Almost everyone knows of Wordstar, one of the most successful word processing systems ever. MicroPro, the company responsible for its development, now has made available special Sigma/OKI versions of this famous package.

All the MicroPro family of systems are ready for demonstration at your nearest dealer. The range also includes: Mailmerge, Datastar, Calcstar, Supersort, Wordmaster and Infostar.

MicroPro software is manufactured and supported in Australia by distributors such as Archives (Brisbane) and Imagineering (Sydney). They are dedicated to providing dealers with documentation advice and after sales service.

The Sigma/OKI library also includes software from suppliers such as Digital Research, Sorcim, Lifeboat and Australian applications from Padmede,

Cyres, IMS, Software Source, John F. Rose and others.

The models 10 and 20 are ready for use with any CP/M software, without need for extra options, hardware conversions or extender cards.
Our dealers can give you a special demonstration. Please consult the dealer index earlier in this issue.


SIGMA/OKI Microcomputers 11th Floor, 157 Walker St., North Sydney. 2060
Dealers Enquiries: (02) 4363777 David Thomas

CHRISTMAS SPECIAL
* APPLEMATE ADD-ON DISK DRIVE AND CONTROLLER FOR ** APPLE II COMPUTER
\(\$ 575\) \$495.00 Inc. Tax

\author{
\(\square\) HIGHLY RELIABLE
}

\author{
FULLY COMPATIBLE
}

\section*{SOFTWARE TRANSPARENT}

BROCHURE AVAILABLE
* TRADEMARK OF MITAC INC
** TRADEMARK OF APPLE INC


\author{
DYNETICS Pty.Ltd.
}

16 LANG ROAD, KENTHURST NSW 2154
Telephone: (02) 6549055 BUS, (02) 6549050 AH

\section*{THE PERSONAL, AND PROFESSIONAL C'cppte SOFTWARE SPECIALISTS \\ CHRISTMAS SPECIAL \\ STARTER PACK \\ * SPELLING AND SPEEDREADING \\ * GERMAN TUTOR \\ * FRENCH TUTOR \\ * AUSTRALIAN GEOGRAPHY TUTOR \\ * UNIVERSAL TUTOR \\ PLUS \\ * ARCHIVES -- BIBLIOGRAPHY - FILING \\ \$275 \\ CAVERNS OF MORDIA \(\$ 75\)}
G.P.O. Box 1033, Sydney 2001. Phone: (02) 3984023

\section*{MICROMARKET}

Our bi-monthly guide to microcomputer systems. This first installment is not comprehensive and will be expanded to include most micros available in Australia. Updates and corrections are welcome and should be telephoned to Des Smith on (03) 5237866.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
M. (C.IINX: \\
Price from
\end{tabular} & MOIDR, NO. Model & DISTRIBUTOR Phone No. & HARDWARF: & SOFTWARE & MISCELLANFOUS \\
\hline Altos \(\$ 5000.00\) & ACS -8000 & \begin{tabular}{l}
Microsolutions \\
(03) 8786004
\end{tabular} & \begin{tabular}{l}
280A: 64K RAM: \\
8" F/DIS/0 1BM: \\
.3 Megs \(\times 2\) : \\
Seperate Screen
\end{tabular} & \(\mathrm{CP} / \mathrm{m}\) & H/0:Multi User \\
\hline Archives \$6000. 00 & Archives 2 & Archives (03) 6998377 & \[
\begin{aligned}
& \text { ZBOA/80BE:128K RAM: } \\
& 2 \times 5.25^{\prime \prime}: \\
& 750 \mathrm{~K} \text { 8ytes }
\end{aligned}
\] & \(C P / M\) & H/D:Multi Usex \\
\hline \[
\begin{aligned}
& A B C \\
& \mathrm{~N} / \mathrm{A}
\end{aligned}
\] & ABC-24 & \begin{tabular}{l}
0'Reilly Computers \\
(02) 8982799
\end{tabular} & 180.1. © 4 K RAM: & \(\mathrm{Cl} / \mathrm{NH}\) & \\
\hline \begin{tabular}{l}
Acorn \\
\(\$ 1550\)
\end{tabular} & E15: & Consolidated Marketing Corp. (0.3) 419 3033 & 16k - 32k RAM: & Acorn 1.0 & \[
\begin{aligned}
& \text { Networking: Printex: } \\
& 5.25^{\prime \prime} \mathrm{F} / \mathrm{D}
\end{aligned}
\] \\
\hline Apple
\[
\$ 1395.00
\] & Apple II & \begin{tabular}{l}
Apple \\
(02) \(212 \quad 2833\)
\end{tabular} & 6502 \& 280A: 15-48K RAM: Colour vou & \begin{tabular}{l}
foS:CP/M: Basic: \\
PASCAL:GAMES: \(1 / 1 /\)
\end{tabular} & \(5.25^{\prime \prime} \mathrm{F} / \mathrm{O}\) :17 Meg H/L \\
\hline \begin{tabular}{l}
Apple \\
N/A
\end{tabular} & Apple ITI & \begin{tabular}{l}
Apple \\
(02) 2122833
\end{tabular} & 6502 \& 28[1A: 96k RAM: & \begin{tabular}{l}
005:CP/M:Easic: \\
0/5:GAMES
\end{tabular} & 11 P6:2 \(11 / 0\) \\
\hline \[
\begin{aligned}
& \text { Atari } \\
& \$ 5775
\end{aligned}
\] & Atari 400 & \begin{tabular}{l}
Futuretronics \\
(03) 5792011
\end{tabular} & 6502:16K RAM: 5.25" \(\mathrm{F} / \mathrm{D}\) : 90 K : UHF \& VHF & Atari:Graphics & Screen:0isks: \\
\hline Atari
\[
\$ 1439.00
\] & Atarj 800 & \begin{tabular}{l}
Futuretronics \\
(03) 5792100
\end{tabular} & 65D2: 48 K RAM: 5. \(25^{\prime \prime} \mathrm{F} /[1: 90 \mathrm{~K}:\) (JHF \& VHF & Ataris:Craphics & Disks:Cassette:Screen \\
\hline \[
\begin{aligned}
& \mathrm{BBC} \\
& \$ 1165.0 \mathrm{D}
\end{aligned}
\] & Bbe Micro A & Barson Computers (03) 4193033 & 6502:32K RAM: 400k:Colour or Monochrome & BEC & Disk \\
\hline  & Cx-1 & \[
\begin{aligned}
& \text { Canon } \\
& (02) 201331
\end{aligned}
\] & 36-96K RAM: & MCX & N/A \\
\hline Columbia N/A & MPN-16Bit & President Computers (03) 5291788 & \[
\begin{aligned}
& \text { 8088:128K FAMM: } \\
& 2 \times 5.25^{\prime \prime} \mathrm{F} / \mathrm{D}: \\
& 500 \mathrm{~K} \text { per Drive }
\end{aligned}
\] & MS 00S:CP/M B6 & H/i \\
\hline \begin{tabular}{l}
Commodore \\
\(\$ 399.00\)
\end{tabular} & Wili 20 & \begin{tabular}{l}
Commodore \\
(02) 4376296
\end{tabular} & SK Bytes Ram: & C. 13 H & \(3 K\) Additional Mem,: Interface Cartridge: Screen \\
\hline \[
\begin{aligned}
& \text { Commadore } \\
& \$ 2249
\end{aligned}
\] & CBM 8032 & \begin{tabular}{l}
Commodure \\
(02) 4376295
\end{tabular} & 6502:36K RAM: 12 " Picture Tube & CBM:Basic4 & Dual Disk Drive: Clot Matrix Printer \\
\hline \[
\begin{aligned}
& \text { Connnadore } \\
& \$ 1199.00
\end{aligned}
\] & PET 4016 & \begin{tabular}{l}
Commodore \\
(02) 4378296
\end{tabular} & FSO2:16K RAM: 12" Picture Tube & CBM:Basic4 & Single/Dual. Di.sk Drive \\
\hline Compucalour: N/A & Compucolour It & Anderson Digital. (03) 543 \(207 ?\) & \[
\begin{aligned}
& \text { B08E: } \mathrm{B}-32 \mathrm{KR} \text { RAM: } \\
& 5.255^{11} \mathrm{~F} / 0
\end{aligned}
\] & & \\
\hline Cromenco \(\$ 2820.00\) & \(N / A\) & Informative Systems (113) 6902899 & \[
\begin{aligned}
& \text { 280A: 64k RAM: } \\
& 5.25 \text { or } 8^{\prime \prime}: \\
& 390 k \text { Bytes }-1.2 \\
& \text { Meg: 12" Green } \\
& \text { Screen }
\end{aligned}
\] & \begin{tabular}{l}
CoOS: \\
CP/M Compatible \\
word Processing: \\
S-Basic: \\
Spreadsheet
\end{tabular} & \\
\hline \[
\begin{aligned}
& \text { Daneva Aust } \mathrm{p} / \mathrm{L} \\
& \$ 2000-\$ 15,000
\end{aligned}
\] & Westurn Oigital & Daneva Aust. P/L (03) 5985622 & \(N / A\) & & \\
\hline \multicolumn{6}{|l|}{List of Abbreviations} \\
\hline \multicolumn{2}{|l|}{0/0 Double Density} & H/O Hard Disk & 0/S Operating Syst & & \\
\hline \multicolumn{2}{|l|}{0/S Double Sided} & N/A Not Available & & & \\
\hline \multicolumn{2}{|l|}{F/0 Floppy Di.sk} & P/P Parallel Port & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
MAC.IINF: \\
Price from
\end{tabular} & M(O)F:1, N(). Model & I)ISTRIBUTOR Phone No. & HARDW ARE: & SOFTWARP: & MISCELLA PFOUS \\
\hline Dick Smith \(\$ 1295.00\) & Surcerer 11 & Dick Smith (02) 8883200 & 7.80:8-48K RAM: \(30 \times 64 \mathrm{VDIJ}\) & \[
\begin{aligned}
& \text { m/onsiscp/4: } \\
& \text { Ex Broit: }
\end{aligned}
\] & RS232 Port: P/P: \(\$ 100\) BuS: High Res: Graphies \\
\hline Digital Microsystems \(\$ 5500.00\) & 1056-3 & Intelligent. Terminals Pty. 11.t. (03) 5236311 & 2BOA: BAK RAM: 3" Iam Format: 1.2 Meg. & LP/M & H/D: Multi User \\
\hline \[
\begin{aligned}
& \text { Discovery } \\
& \$ 1424
\end{aligned}
\] & OPC.-180 & Archive Computers (03) 6998377 & 230:54K RAM: & CP/M:DPC/OS & 11/0 \\
\hline Dorado N/A & c50 mu & Dorado Micro Systena (02) 29 4 488 & 2BCA:12BK RAM: Winchester Disks: 6.7 Meg. & Cr/m:OASJS & Multi user \\
\hline Durango \$1100.00 & FAS G. AEHIT: & \begin{tabular}{l}
Ourange \\
(13) 636476
\end{tabular} & \[
\begin{aligned}
& \text { 7.80A:64-192k Ram: } \\
& 5.25 \text { : } 200 \mathrm{~K} \text { Bytes } \\
& \text { 9" Green Screen }
\end{aligned}
\] & Dx-85.m:CP/M & H/D: Multi User \\
\hline \[
\begin{aligned}
& \text { FIS } \\
& \mathrm{N} / \mathrm{A}
\end{aligned}
\] & TTMEF 4500 & \begin{tabular}{l}
Flectronic Contral tystens \\
(03) 6992633
\end{tabular} & 280A:B4-256K RAM: \(55^{10}\) [J/S \& Haxd: 1.2-10 Meg: Grean non reflect screen & LPP/M:UNIX & Communications \\
\hline \[
\begin{aligned}
& \text { ERA } \\
& \mathrm{N} / \mathrm{A}
\end{aligned}
\] & Fira 0 & Electronic Research Australia (075) 325577 & \[
\begin{aligned}
& \text { 280A:G4K RAM: } \\
& 2 \times \text { B }^{\text {n D/ D:1.2 Meg: }} \\
& \text { Geperate Screeri }
\end{aligned}
\] & LP/M & RS232:2 Modern Ports \\
\hline \begin{tabular}{l}
Fairlight, \\
\(\$ 13.530 .00\)
\end{tabular} & LASAM & Fairlight Instirument.s (02) \(331 \quad 633.3\) & \begin{tabular}{l}
6800/5809 Dual: \\
GaK RAM: \(2 \times 8^{\prime \prime} 5 / 0\) \\
D/5:1.? meg:High \\
Picture Ressolution
\end{tabular} & msons & 52. Station Keybore Light, Pentprinter: 30) Meç H/D \\
\hline Hewlett. Packard \$3550.00 & HF3 85 & Hewlet.t: Packaxd Australia (03) 396351 & 15-32K RAM:5":200K: black \& white VDU & Basic & Det Matrix:Graphics \\
\hline Hewlett. Packard N/A & HP 125 & \begin{tabular}{l}
Hewlett Packard Australia \\
(03) 896351
\end{tabular} & 2月OA:64K RAM: N/A & CP/M & \\
\hline \begin{tabular}{l}
Hitachi \\
\(\$ 1994.00\)
\end{tabular} & Peanh 6890 & Delta Semi Comdictors & \begin{tabular}{l}
BEO9:32K RAM:24K \\
ROM: \(12^{\text {" }}\) Green Phos.
\end{tabular} & 005 & \begin{tabular}{l}
5.251 \({ }^{11} / \mathbf{1 0}\) : \\
320 k per ofrive
\end{tabular} \\
\hline \[
\begin{aligned}
& 1 \mathrm{BM} \\
& \mathrm{~N} / \mathrm{A}
\end{aligned}
\] & IBM-PC & \[
\begin{aligned}
& \text { IBM } \\
& \text { (D2) } 923 \quad 5123
\end{aligned}
\] & \begin{tabular}{l}
Intel 8088 \\
15k-156k RAM \\
\(5.25 \mathrm{FF} / \mathrm{D}\) \\
160K Bytes:N/A
\end{tabular} & CP/M 96 & \\
\hline \[
\begin{aligned}
& 16 \\
& \$ 6131
\end{aligned}
\] & TCL - PC & \[
\frac{1101}{(03)} 2672433
\] & \begin{tabular}{l}
B0185 \\
[54K RAM:5.25 11 F/D \\
250k bytes:80 \(\times 24\) \\
Green Phosphor
\end{tabular} & \(C P / M \& M P / M\) & Dot Matrix Printer H/0 \\
\hline Industrial. Microsystem: \(N / A\) & 1M9-5000 15 & S.T. Microcomputer Productions (02) 2314091 & \begin{tabular}{l}
180A: Ȩ4K RAM: \\
N/A
\end{tabular} & \begin{tabular}{l}
CP/M\& MP/M \\
Turteo \& Dos
\end{tabular} & \\
\hline Intertec \(\$ 51.30\) & Supertrain & Computer Benefits (013) 69916.3 & \begin{tabular}{l}
280A:64K RAM: \\
\(2 \times 5.25\) " \(\mathrm{F} / 0\) \\
. 8 MEG - 5 MEG \\
Black \& whit.ta
\end{tabular} & cp/m & Rs232 Prot. \\
\hline \begin{tabular}{l}
kOS \\
\$6150
\end{tabular} & KDS 7850 & (1)Reilly Computers (03) 8906306 & \[
\begin{aligned}
& \text { 2BOA:64K RAM: } \\
& 2 \times 8^{\prime \prime} \mathrm{F} / 0 \mathrm{O} / \mathrm{D} / \mathrm{D} \\
& 2.3 \mathrm{MEG}
\end{aligned}
\] & C.P/M & 10. MEC H/D \\
\hline Micronation \(\$ 7600\) & M\& & Micro Paocessor Applications (03) 8900277 & \begin{tabular}{l}
280:G4K RAM: \\
8" F/0:1.2 MEG
\end{tabular} & CP/M 2.2 & Network: Screen extra \\
\hline Monrue \$6" 98 & 8820 & \begin{tabular}{l}
Business Cantrol Systiems \\
(03) \(596 \quad 6366\)
\end{tabular} & \begin{tabular}{l}
\[
2 \times 280 \mathrm{~A}: 128 \mathrm{~K} \text { RAM: }
\]
\[
2 \times 5.25^{11} \mathrm{~F} / 0
\] \\
320k Bytes per drive \(00 \times 24\) Green Phos
\end{tabular} & \begin{tabular}{l}
MUS \\
DP/Mavail.
\end{tabular} & G40k pet drive Memory Exp to 256 K \\
\hline \begin{tabular}{l}
Monroe \\
\(\$ 4800\)
\end{tabular} & 18. 8800 & Business Control Systems & \[
\begin{aligned}
& 2 \times 280 \mathrm{~A}: 128 \mathrm{~K} \text { RAM: } \\
& 1 \times 5.25 \mathrm{~F} / 0: 320 \mathrm{~KB} \\
& \text { Detach. High Hes. }
\end{aligned}
\] & Mus, & \\
\hline \begin{tabular}{l}
National. \\
\(\$ 4207\)
\end{tabular} & 383000 & \begin{tabular}{l}
Megabus \\
Microcombleters \\
(03) 5286069
\end{tabular} & \[
\begin{aligned}
& \text { 808日: } 128 \text { RAAM: } \\
& 5.25^{\prime \prime} \mathrm{F} / \mathrm{D}: \text { D0K Bytes } \\
& \text { Green High Res }
\end{aligned}
\] & MSDOS \& LP/M \% & \\
\hline \[
\begin{aligned}
& \text { NFI, } \\
& \text { W } 418 \text {, }
\end{aligned}
\] & Pe. ennota & NELC Australial (02) \(438 \quad 3544\) & \[
\begin{aligned}
& \text { PD/80C-1:32-64k RAM: } \\
& \text { Cassette:N/A } \\
& \text { High Res. Colour }
\end{aligned}
\] & & Printer 100cps Disik Drives Avail. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline MACHINE: Price from & Molifil. NO. Model & IDISTRIIBUTOR Phone No. & HARDWARF: & SOFTWARI: & MISCRLLANEOLIS \\
\hline Northstar \$500 & Horizon & Andersm Digital (03) 543 207? & \begin{tabular}{l}
2804/8086: \\
54K-255K RAM \\
5.25" F/0:720K Bytes \\
Green Screen
\end{tabular} & CDOS \& CP/M & Multi User: \(\mathrm{H} / \mathrm{D}\) \\
\hline \[
\begin{aligned}
& O K I \\
& N / A
\end{aligned}
\] & IF 800-20 & \begin{tabular}{l}
Sigma Data \\
(03) 262465
\end{tabular} & 2B0A: 64K RAM: \(2 \times 5.25^{\prime \prime} \mathrm{F} / \mathrm{O}\) 280k Per Drive 12" Green Phos. & CP/M & 80 cps Printer: \(8^{\prime \prime}\) F/D ROM Cartridge \\
\hline \[
\begin{aligned}
& \text { ONYX } \\
& \$ 12825
\end{aligned}
\] & c. 8000 & \begin{tabular}{l}
Onyx Australia \\
(02) 4986611
\end{tabular} & \[
\begin{aligned}
& \text { 280:64K RAM: } \\
& H / D: 10 \text { MEC } \\
& N / A
\end{aligned}
\] & CP/M \& Urix & Facility for 8 users \\
\hline Option \$4600 & Option-2 & Microprocessor Applications & \[
\begin{aligned}
& \text { ZBOA: } 64 \mathrm{~K}-12 \mathrm{BK} \text { RAM: } \\
& \mathrm{B}^{\prime \prime} \mathrm{F} / \mathrm{D} \mathrm{D/S} \mathrm{D/D}
\end{aligned}
\] & \(C P / M \& M P / M\) & \begin{tabular}{l}
Screen Avail. \\
Facility for 2 users
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { Osborme } \\
& \$ 2595
\end{aligned}
\] & Osborne-1 & Dsborne Computers (172) 4381800 & 2BOA: 64K RAM: \(2 \times 5.25^{\prime \prime} \mathrm{F} / 0\) 90 K per drive 51 screen & \begin{tabular}{l}
C \(13 / \mathrm{m}\) \\
wordstar:visicald \\
Mai lmerge:C-Basic
\end{tabular} & Monitor:H/O \\
\hline \[
\begin{aligned}
& \text { Dtrana } \\
& \$ 4995
\end{aligned}
\] & Attache & Elmeasco Instrument: (03) 2334044 & \begin{tabular}{l}
280A: 64K RAM: \\
\(2 \times 5.25^{\prime \prime} \mathrm{F} / \mathrm{D}\) \\
600 k Bytes \\
\(5^{\prime \prime} 80 \times 24\) Green
\end{tabular} & CP/m & Monitor: Sraphies \\
\hline \[
\begin{aligned}
& \text { Tandy } \\
& \$ 5300
\end{aligned}
\] & 1RS-30 & Tandy Electronics (02) 6336633 & \[
\begin{aligned}
& \text { 280A: } 32-62 \mathrm{~K} \text { RAM: } \\
& B^{\prime \prime} \mathrm{F} / 0: 500 \mathrm{~K} \\
& 80 \times 24 \mathrm{VOU}
\end{aligned}
\] & \begin{tabular}{l}
005 \\
Basic
\end{tabular} & \\
\hline Sanyo \(\$ 3500\) & MEIC: 7000 & \begin{tabular}{l}
Sanyo \\
(03) 6? 5501
\end{tabular} & \begin{tabular}{l}
280A:G4K RAM: \\
\(5.25^{\prime \prime} \mathrm{F} / 0 \mathrm{D} / \mathrm{S} \mathrm{D} / \mathrm{D}\) \\
З20K:Creen Screen
\end{tabular} & \(\mathrm{CP} / \mathrm{M}\) & 5-10 MEG H/D \\
\hline \begin{tabular}{l}
Seiko \\
N/A
\end{tabular} & 8.300 & Tec \& Thomas (02) 4284233 & 8085A: G4K RAM: \(N / A\) & \(N / A\) & \\
\hline \begin{tabular}{l}
Seiko \\
\$22000
\end{tabular} & 9500 & Jec \& Thomas (02) 4284233 & \[
\begin{aligned}
& 8068 / B 087: 512 \mathrm{~K} \\
& 5.255^{\prime \prime} \mathrm{F} / 0: 1.2 \mathrm{mEG} \\
& \text { Built in Surcen }
\end{aligned}
\] & RMIX 96 & 10-20 MVEG H/0 \\
\hline Sharp \(\$ 6000\) & PC-031 & \begin{tabular}{l}
Sharp \\
(0.3) 763 9444
\end{tabular} & \[
\begin{aligned}
& \text { 280A:64-128K RAIM: } \\
& 5.25 \text { or } \text { 月 }^{11} \mathrm{~F} / \mathrm{C} \\
& 256 \mathrm{~K}-4 \mathrm{MEG}
\end{aligned}
\] & Sharp: \(/\) /00s:C\%/M & \\
\hline \[
\begin{aligned}
& \text { Sharp } \\
& \$ 1895
\end{aligned}
\] & M2. 808 & \begin{tabular}{l}
Sharp \\
(03) 7639444
\end{tabular} & \begin{tabular}{l}
2BIA: 6AK RAM: \\
5.25" F/0 0/S 0/0 256K bytes/drive 9" green screen
\end{tabular} & CP/M 2.2.2.02 & \\
\hline Sinclair \(\$ 149\) & 2X81 & Barson Computers (03) 419.3033 & 28DA:BK RAM: Cassette:N/A & \(2 \times 81\) & Screer Avail. \\
\hline \[
\begin{aligned}
& \text { Sirius } \\
& \$ 5495
\end{aligned}
\] & Siriusw & Barson Computers (03) \(419 \quad 3033\) & \begin{tabular}{l}
g088:12gK RAM: \\
\(5.2511-8^{\prime \prime} \mathrm{F} / 0\) \\
GOOK - 1.2 MEG \\
Colour Screen
\end{tabular} & MSDOS \& CP/M & \\
\hline \[
\begin{aligned}
& \text { Sord } \\
& \$ 3995
\end{aligned}
\] & Mik. 3 & Mitsui Computer Systems (02) 9299921 & \begin{tabular}{l}
2.802 [3 4 M 142 \\
120K RAM: \\
\(2 \times 5.25^{\mathrm{FF}} / 00 / 50 / 0\) \\
330k per drive \\
\(12^{\prime \prime}\) Green screen
\end{tabular} & \[
\begin{aligned}
& \text { SORD:FDOS } \\
& \text { UCSD:Lif ebaot }
\end{aligned}
\] & \begin{tabular}{l}
10 MEG Winchester \\
14" Morkity
\end{tabular} \\
\hline Toshiba \$5690 & T 2000 & \begin{tabular}{l}
Toshiba Australia \\
(03) 5612752
\end{tabular} & \begin{tabular}{l}
BOB5A:G4K RAM: \(5.25^{11} \mathrm{~F} / 0 \mathrm{~N} / \mathrm{A}\) \\
12" Green Screen
\end{tabular} & N/A & 5 MEC H/D \\
\hline Vectos \(\$ 6000\) & 2600 & Dicker Data Procucts & 2801:64K RAM: \(5.25^{11}\) F/D:1.2 MEG B/W VOU & Dos CP/M:Basic & H/0 \\
\hline \[
\begin{aligned}
& \text { Versatile } \\
& \$ 5592
\end{aligned}
\] & Versetile 4 & Micraprocessar Applications (02) 7545108 & 8085:32-56K RAM: \(2 \times 5.25\) F/D:030K 8/w VDU & MDOS \& \(C P / M\) MBasic & \\
\hline \[
\begin{aligned}
& \text { Xerox } \\
& \$ 5478
\end{aligned}
\] & 9\%11 & Novex Data Systems (02) 2675544 & 280:64K RAM:GK ROMM \(5.25^{\prime \prime}\) or \(8^{\prime \prime} \mathrm{F} / 0\) 1 MEG:N/A & CP/M \& CO2000 & 5-35 MEG H/D Avail \\
\hline \[
\begin{aligned}
& \text { Xerox } \\
& \$ 5940
\end{aligned}
\] & 4.0-? & Novex Data Systems (02) 2675544 & \begin{tabular}{l}
280A: 64K -92K RAM: \\
N/A:1 MEG \\
5oreen Inclusive
\end{tabular} & \(\mathrm{cp} / \mathrm{M}\) \& 202000 & 10 MEG in bux \\
\hline
\end{tabular}

\section*{NO, WE WON'T BYTE YOU BUT WE WILL MAKE YOU PURR WITH OUT PRICES ON THE INCREDIBLE (0) HITACHI PEACH \\ AS WELL AS DISKETTES, PRINTERS, SOFTWARE \& BOOKS \\ BUSINESS, HOME, ANYWHERE IS PURRFECT FOR A PEAC.H ESPECIALLY ON A CUSTOM-BUILT DESK DESIGNED TO SUIT YOUR NEEDS}

\section*{C. ITOH PRINTERS WITH APPLE or TRS 80 interface 8510. . \$ \(\$ 1060\) incl. TAX M1550 . . . \(\$ 1430\) incl. TAX}

KAYPRO II \(\$ 2950\) incl. TAX (Now with \(\$ 2500\) worth of software at no extra charge.)

\section*{VERBATIM DISKETTES}

51/4" DOUBLE DENSITY SINGLE SIDED \(\$ 40.00\) BOX OF 10
\(51 / 4^{\prime \prime}\) DOUBLE DENSITY DOUBLE SIDED \(\$ 60.00\) BOX OF 10


\section*{IMPORTERS WAREHOUSE CLEARANCE STAR 80 PRINTER-------ONLY \$399*}


My Cheque for \$ . . . . . . . . . . . . . . . . . . . . . is enclosed.
Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Postcode

\section*{DP 8480 FEATURES}
* 80 cps. Bidirectional Logic Seeking.
* Tractor and Friction Feed.
* 80, 96, 132 Chars Per Line.
* Double Width Characters.
* Centronics Compatible Interface Only.

Mail Order Only - No Personal Shopping.
Fill Out The Order Coupon and Mail To:

ALPHA DIGITAL RESEARCH PTY. LTD., 1761 FERNTREE GULLY ROAD, FERNTREE GULLY. VIC. 3156.
** Price does not include Sales Tax.
Tax Paid Price is \(\$ 478.80\).
Price does not include Delivery.
Please advise method of shipment and goods will be despatched Freight Forward.

\section*{DIABY Dita}

\section*{Readers are strongly advised to check details with exhibition organisers before} making travel arrangements to avoid wasted journeys due to cancellations, printer's errors, etc. Organisers are requested to notify APC of forthcoming events well in advance to allow time for inclusion in 'Diary Data'.

\section*{Dubai}

Atlanta, Georgia
Sydney

Gulf Computer Exhibition.
Contact: Trade Centre Management Co, 01-930-3881 Southcon Electronics Show.
Contact: ECL (Exhibition Agencies) Ltd, 01-486-1951
The 1 st Australian Personal Computer Show, Centrepoint.
Contact: Australian Exhibition Services

December 13 -
December 16,1983
January 18 -
January 20, 1983
March \(10-12,1983\)


Here is a list of all Australian personal computer networks. As more networks appear - and as more facilities are added to existing ones - we'll report them in this section, which appears monthly.

The Australian Beginning. Operator: The Australian Beginning Pty. Ltd. 364 La Trobe Street, Melbourne. Tel: (03) 329 7998. Facilities: Information service, electronic mail, software storage, and software downloading. Hours: 24 hours/day, 7 days/week.

INFONET. Operator: Network Services Division of Computer

Sciences of Australia Pty. Ltd., 460 Pacific Highway, St Leonards, NSW. Tel: (02) 4390033 . Facilities: Access to databases produced by the Austranan Bureau of Statistics and the Institute of Economic and Social Researeh. Hours (E.S.T.): Monday to Friday (7am to 9 pm ), Saturday ( 8 am to 5 pm ) and Sunday ( 8 am to 11.30 am ).

AUSINET. Operator: ACI Computer Services, P.O. Box 42, Clayton, Victoria. Tel: (03) 5448433 . Facilities: Medium to databases whose subject coverage includes agriculture, education, energy, industry, public affairs, science and technology and an online Australian database directory Hours: 8.30 am to 9.00 pm E.S.T. Monday to Friday.

IP Sharp Associates Network. Operator: IP Sharp Associates Pty. Ltd., 13th Floor, 175 Pitt Street, Sydney. Tel: (02) 232 6366. l"acilities: The network is an international time sharing data processing network, the host computers being located in Toronto, Canada. Hours: 24 hours/day, 2 days/week.

\section*{ATARI \(\Omega\)}


\section*{KAYPRO II}

FEATURING:
\(9^{\prime \prime}\) Green Screen
RS232 and Centronics
Profitplan \({ }^{T M}\)

80 Col \(\times 24\) Rows 80 COTM SBasic \({ }^{\text {TM }}\)

Double Density Disks Select TM Selech TM
Caulfield also offers a variety of specialist sottware. NEW!! \$2,500 of Sof tware included in price of KAYPRO

\section*{CAULFIELD BUSINESS COMPUTERS}
(A division of Caulfield Typewriters) 874 Glenhuntly Road, Caulfield South 3162. Telephone: (03) 5284555

\title{
Micro-Educational
}

\author{
17 PARK ROAD, \\ GARDEN SUBURB, NSW 2288
}

Phone: (049) 436805
(049) 430624
. software for Australia

\section*{LOOKING FOR SOFTWARE?}


\section*{our 1983 \\ Software Guide}

IS NOW AVAILABLE
\$3.95
inc. post
- Over 60 pages of independent reviews
-800 SOFTWARE \& HARDWARE PRODUCTS
- ALL MICROS
- INCLUDES IMAGINEERING PRODUCTS

\section*{CHRISTMAS APPLE GAMES} SPECIAL
(While Stocks last)
ANY 3 FOR \(\$ 70\) (inc. post.)
CHOOSE FROM
dUELLING DIGITS RED ALERT
GUARDIAN
LA LAND MONOPOLY
ALIEN AMBUSH
ESCAPE FROM RUNGISTAN GENETIC DRIFT
TRACK ATTACK (APPLE)
GALACTIC REVOLUTION
TAWALA'S LAST REDOUBT GOBLINS
CONGO
UTILITY CITY

LABYRINTH CHDPLIFTER CROSS COUNTRY RALLYE GOLDEN MOUNTAIN
CROSS FIRE
FLY WARS
SPACE QUARKS
GALACTIC EMPIRE
GALACTIC TRADER
PIG PEN
COMPUTER FOOSBALL
APP LE MECHANIC
TIP DISK
DOS BOSS

\section*{BUSINESS APPLICATIONS}

Home accountant:
the top selling cash book program
\$89.95
Cardbox: see review this issue
\(\$ 275.00\)
Sandy's Wordprocessor:
one of the fastest professional
wordprocessors on the market
\(\$ 175.00\)

\section*{HARDWARE SPECIALS}
C.ITOH 8510 includes Apple interface \(\$ 995\) incl. tax TEAC Slimline drives
\(\$ 695\) incl. controller \(\$ 550\) excl. controller

> APC is interested in Basic or Pascal Programs for any popular micro - please tell us which one you wrote your program on and how much memory it uses. Make sure your programs are fully debugged before you send them in on cassette (although we will accept disks) with a clear listing on plain paper. Documentation would be welcome, and if you want it returned please label everything with your name and address and include an SAE. Send contributions to: APC Programs, P.O. Box 280, Hawthorn, Victoria 3122.

\section*{Teepee Textpro}
by Mike O'Regan

This is one of the best programs I've received for the TI99/4A. It's a word processor which works with the TI Thermal Printer, but if anyone wants to reconfigure it for use with a different printer the relevant lines to change are 1720, 1740 and 2680. Lines 1980 , 2190,2240 and 2630 should all have the ' 28 ' changed to suit the line length of any other printer. All the instructions you'll need to process your words of wisdom are contained within the program as a menu.

As listed it will print out 28 columns to match the screen. Control characters for upper case ( \(\wedge\) ) and indent ( \(>\) ) are not included in the characters per line count.

One of its neat features is that it. uses the TI99/4A's character redefinition
facilities and the Thèrmal Printer's ability to mimic the chosen character font. The characters used here are customised, offering lower case with true descenders. These can be obtained directly from the keyboard.
TeepeeTextpro does posess some minor limitations - which were deliberate in the interests of saving RAM. It doesn't offer automatic line wraparound, block deletion or insertion or line length safeguards on edited lines. However, it does SAVE and LOAD your text to and from cassette at the press of a key.

For users of the T199/4A this program will be useful as a rough word processor, although I couldn't see it being used for business letters and suchlike unless a more conventional printer were used.
100 REM TEEPEETEXPRO
110 REM BY MIKE D'REGAN
120 REM UPDRTED 2/09/62
130 REM
140 REM CUSTOM CHPR SET
150 DATA 00101010001
150 DATA 001010
160 DATA 002628
170 DTTA 002876287628
180 DATA 00382070207 C
190 DATA 006468102 C 4 C
200 DRTA 00205020545824
210 DRTA 00101
220 DATA 000810101008
230 DATA 00201010102
230 DATA 0020101
240 DATA 002828
240 DATA 002828
250 DATA 0010107 Cl 101
250 DATA 0010107 Cl 101
260 DATA 000000006020
260 DATA 0000000060204
270 DATA 0000007 C
280 DATA 00000000605
290 DATA 0000000060204
300 DATA 003646546438
300 DATA 00364C546438
310 DATA 001030101035
320 DATA 00364406107 C
330 DATA 00.56441 E4436
340 DATA 000 S182B7C08
350 DATA 0070403 CO 47 C
360 DATA 001020784438
370 DRTA 007 COE 10202
380 DRTA 003844384436
380 DRTA 003844384438
390 DRTA 0038443 cosi
390 DRTA \(0038443 \mathrm{COB1}\)
400 DRTR 00303000303
400 DATA \(00303000: 303\)
410 DATR 0030300030302
420 DATA 000204060402
430 DATA 00007C007C
440 DATA 00201006102
450 DATA 003 B 4418001
460 DATA \(00364 C 4 \mathrm{C} 4038\)
460 DRTA \(00384 C 4 C 4038\)
470 DATA 003844447 C 44
480 DATA 007844784475
490 DATA 003644404036
500 DRTA 007844444478
510 DATA OOPC40784070
520 DATA 007C4076404
530 DHTA D03044404030
530 DATA DO3E44404035
5.40 DRTA OO44447C4444
550 DATA 003810101036
560 DATA OU0404044438

570 DRTA 004446704644 S80 DATA OO404C1404070 590 DRTA 004400544444 600 DRTA 004464544644 610 DATA OO7C4444447C E20 DATA 00764444734 630 DATA 003844444030 E40 DRTR 00784478504C 650 DRTA 003C40380470 660 DATA 007C1010101 670 DATA 004444444438 ESO DATA 00444444261 690 DATA 004454545428 700 DATA 004428102344 710 DATA 00442810101 720 DATA 007C0510207C 730 DRTA 001810101018 740 DATA 004020100304 750 DATA OO301010103 760 DATA 00102844 PTO DATA 000000000070 780 CIATA 001008 790 LATA DOON:B444435: 800 DATA 004078444475 810 שRTA OOU03E40403C 520 DATH OOO43C444430 650 DATH OUOOSB447E4038 340 DATA D0:54070404 s50 DATA 0000:3844443C0475 S60 IRTA 004078444444 670 CRTA 00100010101 880 DATA 0004000404044438 890 DATA 004048704E44 900 DATR 00301010101 910 DHTH 000068545454 920 OHTR 0000078444444 9.30 DHTA 000038444435 940 DRTA 000076444478404 950 DHTA \(00003 \mathrm{SC4444:300404}\) 950 DRTA 000058644014 970 DRTA 000003840350438 960 DATF OU2070202038 990 RATH OOOO44444430 1000 DATA 000044442 E 1 1010 DATA DOOO44545428 1020 DATA 000044263644 1030 DRTA \(00004444443 \mathrm{CO47C}\)

\section*{Micro Products P.O. Box 8 ,}

University of New England,
Armidale, NSW, Australia 2351
Phone: (067) 725792

\section*{CDMPUTER
}

24 Tested, Ready-to-Run Game Programs in BASIC
\(\$ 13.50\)
32 BASIC Programs for the Apple Computer
33 Challenging Computer Games TRS-80/Apple/Pet
1001 Things to do with your

Personal Computer
BASIC Cookbook
Computers for Everybody
My Computer Likes me when i speak BASIC
Your First Computer
How to Make Money with your
Microcomputer
6502 Games
\(\$ 21.50\)
\$21.50
Apple Pascal Games \(\quad \$ 24.95\)
Fifty BASIC Exercises
Hardware Projects Hardware Projects
\(\$ 14.95\)
Basic Digital Electronics \(\$ 13.50\)
Build Your own Working Robot \$11.95
Giant Book of Computer Software \(\$ 23.95\)
Programming the \(6502 \quad \$ 23.95\)
Programming the Z80 \(\$ 26.50\)
How to Build Your Own Working
Microcomputer
\(\$ 16.95\)
Master Handbook of
Microprocessor Chips \(\$ 18.50\)
Microprocessor Cookbook \$11.95
Microprocessor Programming for Computer Hobby ists
\(\$ 14.95\)
How to Get Started with CP/M \(\$ 23.50\)
introduction to TRS-80 Graphics \(\$ 19.95\)
BASIC for Business \(\$ 21.50\)
CP/M Handbook \(\$ 24.95\)
Introduction to Word Processing \(\$ 21.50\)
introduction to WORDSTAR \$19.95
TOTAL \$

POST TO: Micro Products, P.O. Box 8AU University of New England, Armidale, NSW 2351

Total Purchase (from above) \$
Pack \& Post,
Up to 3 books \(\$ 3.50\)
Over 3 books \(\$ 6.50 \quad\) P\&P \(\$\)
Payment by
Cheque/Money Order enciosed
Bankcard Number 496
Expiry Date
Signature.
Total Enclosed \$
YOUR NAME
ADDRESS.
\(\$ 13.50\)
\(\$ 9.95\)
\(\$ 8.95\)
\(\$ 8.50\)
\(\$ 14.95\)
\$21.95

........................... .

Postcode


180 GOUGER STREET, ADELAIDE, S.A.
All Correspondence to:
G.P.O. BOX 1880, ADELAIDE, S.A. 5001

TELEPHONE: (08) 2118146

\section*{PROCRAWS}

1040 DRTA 000076081070
1050 FOF \(K=33\) TO 122
10EO FEFC OT
1070 EFLL CHARK，CD
1080 HEXT K
1000 CFLL CLEAR
1100 EDSUE 5040
1110 FF：INT．
TEEFEETEXFF：D
＂：：：：：
Et MIKE D REG
AN＂
11SO FFIUT FRF THE T．I．THEF：THL
FRINTER＂
1140 FRIMT
1150 gasue sosu
1160 GALL HCHAE： \(1,1,30,321\)
1170 GALL VCHAF： \(12,1,30,221\)
1130 CALL UCHAF（2， \(22,30,22\) ）
1190 GALL HCHAR（24， \(1,30,32)\)
1200 BOSUE 4ggo
\(1 \overline{10}\) EFLL LLEFF：
1220 PRINT＂ 99.4 aldNERS FRESS KE
i 4 ＂
12 SO CALL KEY（O，K， E\()\)
1240 IF \(\approx=0\) THEN 1230
1250 IF K． 52 THEN 1270
\(1260 \mathrm{TT}=1\)
1270 GIM HT（100）
123 FEM－MASTER MENL
1290 EHLL ELEFR
1300 SOSUE 5040
1310 FEINT ．
\＃\＃\＃MENU \＃\＃\＃＂
1320 FRINT THE：5）：＂0．WRITE TEX \(\mathrm{T}^{13}\)
1330 FFIIPT TAESE！； 1 ．DRAFT AN
SEREEN＂
1340 FRINT TAE（5）：\({ }^{-2 .}\) FRINT FIN FLL DRAFT＂
1350 PRINT TRE：5！：－3．DELETE LI
HE＂
1350 FRINT TAESE）； 4.
IdSERT L
NE
1370 PRIAT THE（5）：＂5．REPLACE \(L\)
INE＂
\(13 \equiv 0\) FRINT TRE（5）：＂E．FEPLACE d
－
 ＂FE＂
1400 FRINT TRE（5）：＂ 5 ．READ FROM TAPE＂
1410．FRINT TAEIEJ：＂G．इTART ABA IN＂
1420 FRINT TRE（5）；＂\％．INSTRUCTI

14SO FRINT TAEIE）：＂KET？＂
1440 GOSIVE 5000
1450 ODSUE E090
1450 CHLL KE \(40, K, 3)\)
1470 IF \(=0\) THEN 1460
14 gn ChLL CLEAR
\(1430 \mathrm{~B}=\mathrm{K}-46\)
\(1500 \mathrm{IF} K=4 E\) THEN 20 SO
1510 IF \(K=49\) THEN 4060
1520 IF \(K=50\) THEN 2510
1530 IF（K E 4 ）K \(K\) ESITHEN 1830
15.40 IF \(K=54\) THEN 3430

1550 IF K＝5S THEN \(35 E 0\)
1560 IF K＝5E THEN S970
1570 IF \(K=57\) THEN 1700
1580 IF \(K=6 \%\) THEN 4740
15 gO GロTa 1280
1800 Baside 5040
1E10 FRINT＂FIEK EHAR：ACTER：SET＂：
：：
1620 gasub 5000
1ESO FRINT TAESE）：－P．FRINTEF SET ＂Largey＂
1E4G FRINT TAE © \(6:\) ； \(2.0 U \leqslant T A M\) SET
 HEE DH？＂：：
16e0 Ensue saga

1 ESO TF S 1 THEN 1 ETO
1090 IF \(K E:=77\) THEN 1290
1700 IF（KEY（49）＋（kEN EOTTHEN \(1 E\) 00
1710 IF RE © 49 THEN 1740
17ご \(\mathrm{EETE=}\) TF．E＂
17SO IF K＝4E THEN 4060 EL \(3 E 2580\)
1740 ETT：＝＂TF，1．E＂
1750 if \(K=4 \xi\) THEN 4060 ELSE 2590
1760 FロR \(\mathrm{I}=1 \mathrm{TL} \mathrm{L}\)
1770 HET （1）
17 SO NEXT I
\(1790 \mathrm{~L}=0\)
1 EOO FRINT＂FILE KOU ELANS： 1810 gasue 4990

\section*{1820 GOTD 1290}

1 aso INFUT＂LINE MUMEEF＂：E
1 S 40 IF （E；1\}+(E)L)=-1 THEN 1850
ELSE 1880
1650 PRINT＂NON－EXISTENT LINE＂
1660 gasue 4950
1870 BuTD 1280
1 ERO FRIMT＇OLD LIME \＃＂；
1 18SO FRINT HF！E！
1900 FDF FSE＝1 TO 250
1910 NEXT FSE
1920 ㅁN．H \(\mathrm{HOTO} 1290,1290,3220,33\) 00.1990

1980 FRINT EHTER REFLRCEMENT LI 4E：
1940 INPUT RT（E）
 EN 1980
19E0 AREE＝＂
1970 SOTD 1260
1960 IF LENGHETEM） 28 THEN 2160
ELSE 1280
1290 REM－ENTEF TEXT
2000 TEMP＝L
zio 10 L＝B
2020 日ロT0 2350
aso gasue 5040
ZOAO FRINT PEACY FAR TYFING－
STARTIWS WITH LIME＂：L＋1
2050 IF \(T T=1\) THEN 2 DEO ELSE 2070 2060 PRINT＂＝JFFPE CASE
gOPO PRINT＂BLREHIDIMIDE SIGHi＝C


＝INOEMT
ZOEO FRINT＂W．E．\＃DUSTOM CHAES aNL．\(V\)
2090 FRINT＂EEEELRTVK LINE＂：：：

ENTERINGTEXT＂：
2110 6ロSUE 5090
2120 GD：3UE 5000
130 PRIHT \(L+1\)
\(2140 \mathrm{IF} \mathrm{L}+1052\) THER 2160
2150 EALL \(\mathrm{BDOME} 1000,440,2,444,2\) ，448，2）
2160 INPIT RETL \(L+1\) ）
2170 LO＝LEN（AS（L＋1）
\(2180 \mathrm{LL=LG}\)
2190 IF LO 26 THEN 2200 ELSE 225 \({ }^{0}\)
2200 Far \(\mathrm{I}=\mathrm{LL}\) TO 1 STEF－1
2210 IF SEGs（RE LL＋1），I，1）o HHRF
g41THEN 2230
\(2220 \mathrm{LC=LO}-1\)
2230 MEXT I
2240 IF LO： 23 THEN 2310
2250 IF LEN CHE CL＋1：）\＆THEN 21.30

HEN 1290
2270 IF SEGE（AT（L＋1，1，1，2）©＇EE＇
THEN 2290
2280 A：\((\mathrm{L}+1)=\)
\(22900^{\circ} L=L+1\)
2300 gara 2130
2310 EEM－SHORTEN LINE LINE
2320 REM EEELL

2340 L＝L＋1
2350 PRINT＂LIME TOD LONG－－SHD RTENECI HE SHalNM：
2360 FDR \(1=2 \mathrm{~S}\) TD 1 こTEF－ 1
2370 IF EEGI（RT（L），I，1）＝＂＂THEN 2420
2330 MEXT I
2sG0 RETLI＝
\(2400 \mathrm{~L}=\mathrm{L}-1\)
2410 GOTD 2430

2430 PRINT FS （L：
2440 IF（TEHF＝B）\＃（TEHF © \({ }^{2}\) ITHEN 2
\(450 \mathrm{EL} \mathrm{SE} 24 E \mathrm{O}\)
2450 L＝TEHP
24Eの IF AFML＋1）＝＂＂THEN 2180
 24,
90
2450 L＝TEMF
2490 एवTロ 2180
5500 REN－PRINT TEXT
\(2510 \mathrm{C}=0\)
2520 OTTD 1600
2530 GDSUE 5000

\(T\) EHODSE FIFMAT：＂
2550 FRINT \(0=\) NUHEEFED
\(1=3\) INGLE PFREED
\(=\)＝DDUELE PFACE
2550 GAL KEVMOKOS
2570 IF \(\mathrm{S}=0\) THEM C 50

OWNERS OF 16k SYSTEM－80 TRS－80

Don＇t accept the limitations of 16 k of keyboard memory．There is no need to leave out those helpful REM statements，or
removeprogramspacestosaveroom ASP＇s INTERNAL MEMORY plug－ in module triples available memory to 48 k reliably，economically，and conveniently INSIDE a Model 1 TRS－80 or System 80 Keyboard unit．

So you get a lot more memory， without ANY more boxes and cables．Memory tightly clustered where it will function most reliably．

\section*{INTERNAL MEMORY}

INTERNAL MEMORY is supplied assembled and tested with 32 k of prime RAM installed．All except the Japanese made TRS－80 version are user installable with full instructions provided．ASP also offers a low cost fitting service． Pricing？
\begin{tabular}{llll} 
& \begin{tabular}{l} 
ex ST \\
incl ST
\end{tabular} & Fitting \\
TRS（US） & \(\$ 133.60\) & \(\$ 157.00\) & \(\$ 10\) \\
TRS（Jap） & \(\$ 165.00\) & \(\$ 191.00\) & incl． \\
System 80 & \(\$ 133.60\) & \(\$ 157.00\) & \(\$ 20\)
\end{tabular}

Freight in Australia－\＄8
Bankcard welcome
And finally，as INTERNAL MEMORY is so reliable，a SIX MONTH WARRANTY．
ORLL TMAS SPECIAL，10\％OFF ORDERED PRIOAL MEMORIES Une PRIOR TO CHRISTMAS


MILRCEDTIPUTERS
Telephone．
（03） 21188552118344
797 CANDENONG ROAD．
EAST MALVERN 3145
VICTORIA AUSIRALIA

\section*{APPLE COMPUTER COURSES}

City Personal Computers is intro－ ducing a series of computer courses designed for the business and per－ sonal Apple user．Courses to be available are：
＊VISICALC
＊ADVANCED VISICALC
＊ADVANCED APPLESOFT PROGRAMMING
＊INTRODUCING APPLE ASSEMBLY LANGUAGE PROGRAMMING

The first of these is designed to enhance the Visicalc users know－ ledge and use of this most useful of business programs．

A prospectus on the courses will be sent to you if you return the coupon to either of our stores．

Return to：
City Personal Computers 5／385 Pacific Highway， Crows Nest 2065
Please send a course prospectus to：
Name：

2580 CALL GLEAR
2590 IF \(K=77\) THEN 1280
26ロu \(E=K-4 \bar{a}\)
2E10 IF（K（43）＋（K52）THEN 2540
262 IF （E 40\()+\) IE 2）THEN 2510
2EFIDFEN \＃1：SETA，ZLITFUTT

EECO \(\mathrm{F}:=\mathrm{A}\)（ \((\mathrm{I})\)
EEGO IF EOO THEN 2830
2ETO PRINT \＃1：I：
2650 IF LEN（FF）\(=0\) THEN 3070
EEGO PRINT \＃1：TREC31；＂
\(2 \mathrm{FOD} \mathrm{FOR} \mathrm{K}=1\) TD LEN（PS）
\(2710 \mathrm{P}=\mathrm{ASC}(\operatorname{seg}(\mathrm{PT}, \mathrm{K}, 1))\)

2720 REM LOLDRUERT
TTERS TD LOEF CASE
2750 IF（F） 64 ）\(\#\)（F（ 81 ）THEN 2740 E
LSE 2760
\(2740 \mathrm{P}=\mathrm{P}+5 \mathrm{~F}\)
2750 GロTD 2950
2TEO REM－CDMUERT SHIFTEG LETT
EFE TO UPPER EASE
2770 IF（P） 96 ）\(\because(F \in 1 Z 3)\) THEN 2760
ELSE ZEOO
\(5760 \mathrm{P}=\mathrm{F}-32\)
2790 GOTD 2950
2500 REM－－CDNUERT SLAEH（／）TD CDMMA（，）－\＃TD＂HND＊TD INE ENT
2810 IF \(P\) at 4 THEN 2840
\(2520 \quad P=44\)
2830 GロTロ 2950
2 240 IF F \(\% 42\) THEN ZE7O
\(2650 \mathrm{P}=34\)
2660 GOTD 2950
2370 IF P © 62 THEN 2900
2380 GOSUE 3110
2890 GDTD 2950
2900 IF \(F=94\) THEN 2910 ELSE \(2 \mu 4 \mathrm{O}\) 2910 GロS46 3150
2920 GロTם 2950
2930 IF P © 95 THEN 2950 ELSE 295
0
2ق40 GロSUE 3180
2 FRINT \＃1：CHRT（P）；
2GEO REM－TEST FER BLANK LIUE（ EB）
2970 IF（ \(F=66\) ）＊（LEN（F＊）\(=2\) ）THEN 3 020
2980 NEXT K
2990 IF B © 2 THEM 3020
SOOO PFINT \＃1
\(3010 \mathrm{C}=\mathrm{C}+1\)
3020 FRINT \({ }^{2} 1\)
\(3030 \mathrm{C}=\mathrm{C}+1\)
3040 CALL KEY（OUK，S）
3050 IF \(s=0\) THEN 8070
SoEG rata soso
3070 NEXT I
SOGO ELDSE \＃1

3100 GaTO 1280
3110 PRINT \＃1：TAE（4）
3120 FRIMT TRE：1）：
\(3130 \mathrm{~F}=32\)
3140 RETURN
\(3150 \mathrm{~F}=\mathrm{ASC} \mathrm{SERT} \mathrm{FS}, \mathrm{K}+1,1 \mathrm{H}\)
3160 K \(=\mathrm{K}+1\)
3170 RETURN
3130 PRINT \＃i：TAB（15）；
\(3190 \mathrm{~F}=32\)
SxOO RETURTM
3210 FEM－－OELETE LINE
3220 L＝L－1
3230 Far I＝E TO L

Sこ5 0 NEXT I
32EGHW（L＋1）＝＂
3270 GOTD 1290
3260 REM
3290 FEM－－IMEERT LINE
\(3300 \mathrm{~L}=\mathrm{L}+1\)
3310 FOF \(I=L\) TG E +1 STEF－ 1

3350 NEXT I
3340 PRIMT＂EMTER NEW LIME＂：
335.0 Sasue Eng

3sEO RESE：
33 PO IWFUT AStE

EN 3400
3390 म 3 （ \(B\) ）＝＂
3400 GOTD 1290
3410 REM
3420 REM－FEPLACE MIRED
3430 IMPIT＂INDRI TO BE CHANEEI： ：Fis

3450［I＝LENTRT？

3450 IF D） 2 THEN 3510
3470 PRINT＂ERRDR＂
3480 FDR PSE＝1 Tロ 250
3490 NEXT PSE
3500 EDTD 3430
\(3510 \quad \mathrm{M}=0\)
3520 IMPUT＂MEEN MDRCT＂：NI
55so INPUT＂FFOM LINE（O＝ALLI？＂： E
3540 IF \(B<=L\) THEN 3570
S550 PRINT＂MI SUCH LINE＂
3560 ERTD 35SO
3570 IF＂ \(\mathrm{B}: 1\) THEN 3610
\(3580 C=L\)
\(3590 \quad \mathrm{E}=1\)
3EDC Eata 3640
3E：10 INFUT＂THROUQH LINE：＇：C
 0
\(35.30 \mathrm{e}=\mathrm{L}\)
\(3 E 40\) PFINT＇SEARCHING
3650 FOR K＝E TO C
3660 PS＝＂＂＊A\＄（K）＊＂
3670 IF LEN（P\＄）©D THEN 3740
3680 A \(=L E N(P \$)+1-D\)
3690 FOR I＝1 TD A
3700 IF RE ©SEGT（Ps，I，D）THEN 373
0
3710 gasue 3780
\(3720 \mathrm{FS}=\mathrm{SEG} \$(\mathrm{PT}, 2\) ，LEN \((P E)-1\) ．
3730 NEXT I
3740 NEXT K
3750 PRINT N：＊CHANGE（S）MRDE
3760 EDSUB 4990
3770 GロTD 1290
3780 CPDS＝PDS（PS，RE，13
3790 IF CPDS OO THEN 3810
3800 RETURN

 ）－1！

3840 AE（K）＝PS
\(3850 \mathrm{~N}=\mathrm{N}+1\)
：3850 PRINT＂LINE \＃＂；
3870 PEINT AS（K．
：3880 RETURN
3890 PRINT＂READY CASSETIE FDR R ECDRDING：－
3900 DFEN \＃1：＂CS1＂，INTERNAL，QUTP UT，FIXED 192
3910 PRINT \＃1：L
3920 FDR I＝1 TD L＋5 STEP 6
39：30 PRINT \＃1： A （II， \(\mathrm{A} \$(I+1), \mathrm{A} \$(I\)
+2 ）， \(\mathrm{A}(\mathrm{I}(\mathrm{I}+3), \mathrm{A}(\mathrm{I}+4), \mathrm{A} \$(\mathrm{I}+5)\)
3940 NEXT I
3950 CLDSE \({ }^{3}\)
3960 ODTD 1290
3970 FRINT＂READ＇Y CASSETTE TD RE AD＂
3980 DPEN \({ }^{19}\) ：＂Cs1＂，INTERNAL，INPU T FIXXED 192
3990 INPUT \(\mathrm{H}: \mathrm{X}\)
4000 FDR \(I=L+1\) TD \(X+L+5\) STEP 6
4010 INPUT \＃1：AS（I），A\＄（I＋1），A\＄（I \(+2), A \$(I+3), A(I+4), A \$(I+5)\)
4020 NEXT I
\(4030 \mathrm{~L}=\mathrm{L}+\mathrm{X}\)
4040 CLISE \＃1
4050 GD TD 1290
4060 REM PRINT FINAL TEXT ON SCR EEN ONL Y
\(4070 \quad \mathrm{C}=0\)
4080 PRINT＂CHODSE FDRMAT：：：：
4090 PRINT TAE（8）；＂D＝NUMEEREC＂
4100 PRINT TAE（8）：＇1＝SINGLE SPAC EO＂
4110 PRINT TAE（ 81 ；＂ \(2=\) DCUBLE SPAD
ED＂：：
4120 GOSUB 5000
4130 CALL KEY（O，K，S3）
4140 IF \(S=0\) THEN 4130
4150 CALL CLEAR
4160 E＝K－4
4170 IF（K） 48\()+(\mathrm{K}(52)\) THEN 4190 E LSE 4080
4160 IF（ B （0）\(+(\mathrm{E}\rangle 2\) ）THEN 4070
4190 FRR \(I=1\) TD L
4200 PT＝A！ㅣ）
4210 IF B＜＞D THEN 4230
4220 PRINT I
4230 IF LEN \((P \$)=0\) THEN 4590
4240 PRINT ․ ；
4250 FDF \(K=1\) TD LEM（P）
4250 P＝ASC（SEGE（PA，K，1））
4270 IF \((P) 64) \times(P\) 亿91）THEN 4280 E
LSE 4300
\(4280 \mathrm{P}=\mathrm{P}+32\)
4290 GロTD 4440

\section*{PROCRAMS}

4300 IF（ \(\mathbf{P}\) ） 96 ）＊（F（123）THEN 4310
ELSE 4330
\(4 \$ 10 \mathrm{P}=\mathrm{P}-32\)
4320 GロTロ 4440
43.50 IF F \(\% 47\) THEN 4360

4340 P＝44
4350 60T0 4440
4360 IF P ©E C THEN 4390
4370 GOSNe 4610
4380 GロT0 4440
4990 IF P队94 THEN 4420
4400 G0SUB 4640
4410 gata 4440
4420 IF P 095 THEN 4440
4430 gasue 4 E．00
4440 PRINT GHRE（P）；
4450 CALL KEY 0 O，KE，ST
4460 IF ST 11 THEN 4480
4470 GOTD 1280
4480 REM TEST FOR ELRNK LINE
4490 IF（P＝66）\％（LEN \((P \$)=2)\) THEN 4 540
4500 NEXT K
4510 IF EO 2 THEN 4540
4520 PRINT
\(4530 \quad \mathrm{C}=\mathrm{C}+1\)
4540 PRINT
\(4550 \mathrm{P}=3 \mathrm{z}\)
\(4560 \quad 0=\mathrm{c}+1\)
4570 IF C＜51 THEN 4590
\(4560 \mathrm{C}=0\)
4590 NEXT I
4600 GロTロ 4700
4510 PRINT TAET11；
\(4620 \quad P=32\)
4 E． 30 RETURN
4E40 \(\mathrm{P}=\mathrm{ASC}(\)（SEGTiPS，K＋1，1i）
4650 K＝K +1
4660 RETURN
4670 PRINT TRET15）：
\(4630 \mathrm{P}=32\)
4 4．90 RETURN
4700 PRINT
FRESS RNY KEY TO continle＂
4710 CALL KEV \((0, K, S)\)
4720 IF \(\mathrm{S}=0\) THEN 4710
4780 EOTO 1310
4740 CALL CLEFF：
4750 REM INSTRULTIUNS
4760 PRINT＂THIS PROGRAIA HANDLES UP TO 100 LINES OF TEXT＂：：
4770 Ensue 4990
4750 IF TT \(\% 1\) THEN 4820
4730 FRINT＇IT PRINTS IN LIWER 0 ASE（SMALL LETTERS）JNLESS T OLD aTHERUISE．＂

4800 GロEUE 4990
4 G10 FRINT＂TO PRQDUCE 1 JPPER CRS E LETTERS，FRESS M BEFDR E ERCH LETTER．＂：：
4 E20 PRINT＂g．4A USERS USE SHIF T KEY TOFRODICE LIPPER \＆LDWER CR SE＂：
4830 gnsub 4960
4 4．40 PRINT＂TO FRODUGE A ELANK L
INE PRESS EEE＇，OR AN INDENT
4850 PRINT＂FQLLOWED BY THE APPR OPRIATE NIMEER DF SPRCES＂：：：
4860 EDSUR 4930
4670 FRINT IF YOUR TRY TQ TYPE 4670 FRINT IF YOUE TRY TO TYPE
A LINE WHICH IS TOU LONG THEN OU WILL BE TOLD THAT THIS IS TO

4860 PRINT＂BE SHartened ta the NERREST WHILE WORD RND THE NEW L INE I I ISPLRYED．LINES WITH＂ 4590 PRINT＂MORE THAT 26 CONTINI DUS CHARRCTERSII．E．ND SPRCE s）WILL BE TOTRLL＇\({ }^{\prime}\) DISCARDED＂：
4900 EUSUE 4980
4910 FRINT＂AFTEE 52 LINES YOU 4
Ill get mid fugid indiehtian that
YDIMFUE ENDISH TEXT Ta FILL DNE
4920 FRINT＂ \(210 E\) OF HN A 4 SHEET （SINGLE SPACEET）＂：
4930 PRINT＂TEXT FEINTOUT OIN SCR EEN DR FRINTER HH゙Y EE STGPPEL A T BINY TIHE EY FRESSINE BNY KE \(Y\)＇
4940 FRINT＂PRESS AN＇KEY FOR ME NU＂
4950 CALL KEV：O．K．3＇
4960 IF S＝0 THEN 4950
4970 GロTם 1280
4960 CRLL SQUNE（4000，10000， 30 ）
4990 CRLL SaUND（4000， 10000,30 ）
5000 FOR BEEP＝1 Ta 3
5010 CALL SUUND（50． 1000,1 ）
5020 NEXT EEEF
5030 RETURN
5040 FOR DIS＝1 TO 12
5050 CHLL SOREEN（S）

5070 NEXT OIS
5080 RETURN
5090 FOR AFF＝1 TD 12
5100 CHLL COLDR（AFF， 2,8\()\)
5110 NEXT APF
5120 RETURN

\section*{PET Firebird}
by Michael Fok

There must be thousands of sticky－ fingered，bug－eyed space game addicts who＇ll find this game keeps them happy over Christmas．It combines many of the dubious qualities of Asteroids， Space Invaders and Phoenix in a series of four little sub－games and it＇s even got a story behind it．Unfortunately
the text in this listing could be improved by some discreet editing，but it＇s readable and easily absorbed．

The rather comprehensive instructions are entirely optional，as they＇re a separate program occupying almost 5 k ． If you don＇t feel like typing them in you can read them from the listing．The


FOR A FULL RANGE OF ATARI VIDEO GAMES AND COMPUTER GAMES IN BRISBANE


ALLIANCE COMPUTERS， 11 CRACKNELL RD． ANNERLEY 4103 Phone：（07） 3921152

COMPUGRAPHICS， 49 CAVENDISH RD． COORPAROO 415 Phone：（07） 3977537

\section*{ROCKSOFT
SOFTWARE}

BLANK TAPES－C15． 6 FOR \(\$ 9.99\)

\section*{2XPACMAN ZXCHESS}

OS SCRAMBLE OS ASTERIODS
OS INVADERS OS DEFENDER \(\$ 14.99 \mathrm{EACH}\)
These games are all written in Machine
Code giving very fast moving graphics and a complexity not available with Basic programs ZX81＋16K
All Prices include Post and Packing BANKCARD WELCOME SEND SAE FOR CATALOGUE
OVERSEAS ORDERS ADD \＄1．00

\section*{ROCKSOFT}

G．P．O．Box 5194 AA Melbourne 3001 PHONE ORDERS（03） 7299647

\section*{THIP PROFRSSIONALS \\ COMPUTERS FOR \\ －SCIENTIFIC \\ －COMMUNICATIONS \\ －ENGINEERING \\ －FINANCIAL MODELLING \\ －BUSINESS \＆ \\ －EDUCATION}

\title{
COMPARE OUR PRICES
} FOR

\section*{(6) нітасн PEACH SYSTEMS} AUSTRALIA'S LOWEST PRICES HURRY WHILE STOCKS LAST SYSTEMS FROM \$1995 Plus tax
(CPU, MONITOR, DOCUMENTATION AND DRIVE)

\title{
RADARO \\ COMPUTER \\ CENTRE
}

316 QUEEN STREET, MELBOURNE
TELEPHONE ENQUIRIES (03) 67-6638
OPEN SATURDAY MORNINGS
N.B. FREE DELIVERY FOR COUNTRY AND INTERSTATE CLIENTS

game itself takes up just over 7k．Both programs use machine code which occupies the second cassette buffer and when the instructions have run the prog－ ram exits，so to avoid keying－in twice （as you have to type NEW between instructions and game），save the instruc－ tions before you run them．Once you＇ve typed NEW，run the game．Pressing key＇ N ＇after running will prevent the
＇STOP＇key from being disabled－on a＇new ROM＇PET．
In the first three stages of the game you can cheat by pressing＇ C ＇（if you＇re the cheating type），but this won＇t actually make things much easier as you can＇t cheat on the fourth stage． Firebird will run on any PET．It was tested using Basic4 and Basic2．

\section*{Game}

READY＇．

```

2 REM ***FIRESIRD VERSION1.1***
3 REM
4 REM
5 REM
6
8 FORI=1T0100:GETAt:IFF'\$="N" THENSO
9 MEXT1
9 10 IF PEEK (50003)=1 THEN FOKE144,49
15 IF PEEK (50003)=160 THEN POKE 144, %8
20 IF PEEK (S0003)=0 THEN POKE 59458,255
30 ER=515-(364*SGN\PEEKK 5000\) >)
100 REM****FIREBIRI HTTFCK**係
110 DEF FHA(FOY)=52768+AK+A'**40
120 AK=20: A''=21:E,=2:EY=1:F1=0:F2=0:F3=0:D1=1

```

```

 140 RESTORE:GOSUR8350:GOSUETOGD:FUKE FNHF(AX),1
 200 FRINT"E"'RIGHT全(Y', EY);TRE(EX);
 210 IF F1=1 THEN 300
 220 EX=EX+DI:IF EX=2 THEN DI=1
 23 IF RND(1) OS DI=-1
 240 IF RNDK1>.95 THEH FI=1
    ```

```

 2g0 IF H=1 Thert H=0 :FR'JNT" 'F."'; :GOT0280
 270 H=1 :PR1NT" A,"
 IF RND(1)>.6 THEN PRINT"NO
 G=G+1:IF G=2 THEN G=0:EX=EX+SGN(RX-EX)
 310 EY=EY+1:1F EY=:22 THEN EY=1:F2=1
 320 PRINT "G"RIGHT年('年,EY); TRE(EX);
 340 H=1:PRIHT" M"'
 359 IF F2=1 FHD RMD(1)>.95 THEN F1=O:F2=0
 360 IF RHD(1)>.6 THEN PRINT"N
 409 S`\826: IF FEEK(FNA(AX))<>1 THEN RP=FNA(RX):GOTO9450
 405 POKE FNA(AX),32
 410 R=PEEK(ER): IF A=42 THEN AX=HX + (AX)2)
 420 IF A=41 THEN RX=AX-(RXC36)
 430 IF A==48 AND FS=0 THEN F3=1:LF=FNH(AX)-40
 435 IF }A=31\mathrm{ THEN 900
 440 POKE FNF(ARN),1
 450 IF F3=0 THEN 2GE
 460 POKE LF, 32:FORI=1TOB:LF=LF-40: IF LF<3E768 THEN FS=G:G0T0200
 470 A=PEEK (LF): IF A=1 OR A=22 THEN S=S+20}:60TO90日,
 480 NEXTI :FOKELFF, 34:GOTO200
    ```


```

 920 NEXTI:PRINT"?";
 330 POKE AP,32:RP=AP-40:1F AP<゙33208 THEN 950
 946 POKE RP, 1 FORI=1 TO50:MEXTI ; GOT0990
 956 POKE RP,79:FORI=1 TO50:NEXTI
 969 POKERP, 32:AP=AF+SGN(33198-AF', IF AF=33198 THEN10G@
 979 FOKE AF, 60:FOR1=1T05G:NEXTI GOTO96E
 1000 REM **** RSTEFOIDS HTTACK ****
 1010 POKE AP,GO:FORI=S26 T0 980:REAIR:FOKEI,A:NEXTI:FOKETEE, 2:F1=0
    ```

```

 1116 POKE768,2:AP=33198:POKE AF, 60:M1=32768:F1=0:F2=0:FS=0
 1150 PR1NT"
 1160 PRINT"
 1179 PRINT",
 1200 FOR1=1T01000:IF RHD(1)3.95 THEN FOHES2T69.87
 1210 GOSUB1 300:NEXTI
    ```

```

50
1230 FORI=1 TO800: POKE 33519,32:GOSUB1:300:NEXTI :GOTO190%
1300 IF PEEK(AP)<>60 THEN 7500
1305 POKE RF, 32
1310 GETA 变:IF F%="Q" THEN AF=RP-40:IF APSMI THEN RF=RP+4D
1020 IF AS="A" THEN AP=AP+40: IF AF>33513 THEN RF=AF-40

```

```

 1.25 I
 1330 POKE RP, ED:SYS826:RETURN
 1900 FOR1=1 TO 8:FOKE OP 32:AF=AF+1.FOKE FP, GO
 1910 FORH=1TO50:NEXTN
 1319 FORN=11TOS0:NEXTN,I
 2010 POKE 891,96:E1=32763:MI=32768:MA=33519:F1=0:F2=0:POKE33643.3:
 2200 SYS640:EX=INT((E1-32768)/40) : AX=INT (< RF-32768)/40)
 2210 POKE E1,32:F1=F1-(F1O10)
 2215 IF F1<>10 THEN E1=E1-SBN(AX-EX)粈40:GOT02225
 22206 E1=E1+5BN(AX-EX)米46
 2225 IF E1<32766 THEN E1=E1+49
 2226 IF E1>33518 THEN E1=E1-40
 2230 IF F1=10 AND RESS(AX-EX)<3 ANI FND(1)3.5 THEN F1=0:G0TO2SOM
 2240 FOKE E1,62
 230日 FOKE AP, 32:F2=F2-(F2010)
 2310 A=PEEK(ER):IF A=64 THEN AP=AF-40:IF FP'MI THEN RP=AF+40
 2320 IF H=4E THEN RF=FPP+40:IF RFSHA THEN RF:=RF-4E
 2325 IF H=31 THEN 290日G
 23304 IF FZ=10 FNII R=42 THEN F2=6:GOTO2600
 2340 FOKE AF EM
    ```

```

 2350 60T02200
 2350 G0T02200 % PRINT"FIGHT$(%&,EX);"
    ```

\section*{MICROSOFT} BETIER TOOLS FOR MICRO－ COMPUTERS

Look to Microsoft for the finest microcomputer system software， productivity tools，educational and entertainment applications．You＇ll always find top quality software backed by thorough documentation，guaranteed product support and superior customer service．Microsoft is the leader in microcomputer software．

Microsoft products are now fully supported in Australia by Wiser－ Microsoft．The full range of languages，operating systems and applications programs are available for computer users and OEMs．

For full details on Microsoft products，see your nearest Microsft dealer．Or contact Wiser－Microsoft on（02） 4519445 or by writing to PO Box 95，Forestville NSW 2087.


WISER－MICR SOFT

\section*{HITACHI＇PPEACH＂}

PERSONAL COMPUTER
Special prices on the PEACH，peripherals， software and business system packages．

Experienced system designer available to discuss your individual requirements．

Ring for a personalised demonstration， tailored to your needs．

FAMILY COMPUTING
AUTHORISED HITACHI DEALER Phone（03）560－3103（All hours）


LA281 \(\qquad\) IBET OF FIVE BAMES JET BOAT（fantatic sound），JUMBLED NUMBERE（hour of tun），PANCAKE TOBE （your computer kosees．parcake and you bet on how high it can be toseed RIVER CROBSING（a brain teaser）and FROG RACE（a gamboling game） THEEE EAMEG WILL ONLY COBT YOU


\section*{PROCRAWS}

\section*{2510 IF E \(\mathrm{X}=\mathrm{RX}\) THEN 75610}

2539 010T02390

2616 IF E，\(=A X\) THEN \(S=S+30: G D T D 2900\)
2620 FRINT＂：
2630 50T02200
2900 FURI＝1TOS0：FOKE E1，60：FOKE E1，170：FOKE E1，62：FOKE E1，32：NEXTI
2910 150SUB7000：GIJTO40®10

4010 GOSUBE30日：GIDEUBEQAG
\(4100 \mathrm{AF}=33707: M \mathrm{~A}=33727: M I=33688: F 0=40: M P=32768: 31=160: E 1=33757: I I=-1\)
4110 FORN \(4=33728\) TO 33767 ：POKE H， 99 ：NEXTN
\(4120 \mathrm{~F}=0: F 2=0: F S=0\)
42 GD FOKE AF， 32
\(4219 \quad A=F E E K(E R)\) IF \(R=42\) THEN \(A F=R F+(A P) M I\) ）
4220 IF \(\mathrm{H}=41\) THEN \(\mathrm{AF}=\mathrm{HF}-(\mathrm{AF}(\mathrm{MA})\)
4230 IF \(A=43\) THEN \(F 1=1: L F=A P-F D\)
4230 IF \(A=48\),
4250 POKE AF，
460 SHE

4310 IF \(F 2=1\) THEN GIOSUB 47010
4310 IF F \(2=1\) THEN GINSUB ATGO 440
4400 FOKE E1，99：EI＝E1 + DI IF E1 633729 THEN EI＝33723：D1＝1
4410 IF E \(1>33766\) THEN E \(1=33766\) ：DI \(=-1\)

4430 FOKE E 1,22

4450 IF F1＝0 THEN 4206
4560 POKE LF： 32 ：FOR \(1=1\) T03
\(4510 \mathrm{LF}=\mathrm{LP}-4 \mathrm{G}:\) IF FEEK（LF） 332 THEN \(\mathrm{FI}=01\) ：GOTO46日G
4515 IF LPCMF THEN F1 \(=0\) O 50 T104200
4520 HENTI ：POKELF， 34 ：GOTO4200

4610 IF Aく 399 THEN POKELP，32：G0TO4200

47 O POKE EL， 51
\(4710 \mathrm{EL}=\mathrm{EL}+40\) ：IF EL \(>33687\) THEN 4806
4720 S1＝FEEK（EL）：POKE EL， 81 ：RETLNR
430日 FORI \(=-2\) TO 2：POKE EL＋I，86：NEXT I
4310 IF ABS CEL－FF）＜3 THEN 9059
482 FORI \(=-2\) TO 2：FOKE EL＋1． 32 ：NEXTI
483 F2 20 ：RETURN
4900 FOKE E1－40，30
4910 IF AF＝E -40 THEN 9050
4929 FOKE E1－40． 32
4940 GOTD4459


2020 NEXTI ：PRINT＂：19＂：FIJRI \(=1\) TO25：FRINT＂
7500 FORI＝1 TO 50 ：PDKE AP，60：POKE AP，170：FOKE AP，62：POKE RF，32：HEXTI
\(7520 \mathrm{P}=\mathrm{P}+1\) ：IF FOOS THEN RESTORE：GOT0100
T560 FRINT＂＂IaNTOM

「5E PRINT＂
75E日 FRINT＂
75E日 FRINT＂
7590
FRINT＂
7590 FRINT＂
7600 PRINT＂
7600 FRINT＂e
7610 FRINT＂
7610 FRINT＂
762 PRINT＂
7639 PRINT＂
7660 \(\mathrm{H} \${ }^{5}={ }^{*}\)


7689 RESTOFE：GOSUBES50：RESTORE
7690 FORI＝1 TO \(25: 8 T^{\prime} 3826: F D R N=1\) T02 1 ：NEXTH．

7710 PRINT＂\(\quad\) YOUR SCDRE IS＂ 3
2715 GETA 5 ：IF AF＝＂一＂THEN EMD
2716 IF Aक 2 ＂G＂THEN 7715
3720 RUN

3100 PRINT＂．＂Mownd
3110 PRINT＂
2120 FRINT＂
3130 FRINT＂
3140 PRINT＂
150 PRINT＂
5160 PRINT＂
3180 PRINT＂
3190 FRINT＂
©210 PRINT＂
320 PRINT＂
3236 RETUR＇N


8310 FORN＝826 TO 843：READ \(\mathrm{H}:\) POKE N．A：NEXTH
8.320 RETLRH

6350 REM＊＊＊＊BOMB M．C．＊＊
3860 FORI＝826 TO 729
3370 READ A：PDKE I，A：NERTI ：RETURN
9096 REM＊＊＊U．EXFLDSION＊＊＊
3010 IF \(51=32\) THEN \(81=32: 52=32: 53=32: 54=32: 100109630\)
9820 S1＝77： \(52=66: 53=75: 54=64\)
TO30 FORI \(=1\) TO10：FOKE A－41＊I， 51 ：POKE A－40＊I，S2：FIJKE A－39wI， 53



3110 IF \(S 1=52\) THER \(\varsigma_{1}=32: S 2=32: S S=32: S 4=32:\) GOT09130
9120 S1＝77：52 \(=66: 53=78: 54=64\)
 3140 POKE A＋41＊I，S1：POKE A＋40；I，S2：POKE A＋39＊ 1 ，S3：FOKE A－I， 54
9150 FORN \(=1\) TOSQ：NEXTN，I：RETURN

3305 DATA \(162,240,189,255,127,201,81,240,42,202,208,246,162,240,189,239\)
3810 DATA \(128,201,81,240,43,202,208,246,162,240,189,223,129,201,81,240,44\)
9820 DATA \(292,208,246,162,240,189,207,130,291,81,240,45,262,268,246,96\) ，回，日 9830 DATA \(32,157,255,127,169,81,157,39,128,76,67,3,169,32,157,239,128,169,61\) 9846 DATA \(157,23,129,76,79,3,169,32,157,223,129,169,81,157,7,130,76,91,3,169\) 9859 DRTA \(32,157,207,130,169,81,157,247,130,76,103,3,255\)
9860 REM腚米米 SCRFMBLE DATA＊ 3 料
7870 DHTA \(172,0,3,136,140,0,3,206,56,160,2,149,0,3,162,39,172,111,131,140,72\) 9890 DATA \(131,189,71,131,157,72,131,292,208,247,162,39,172,71,131,140,32,131\) 9900 DATH \(247,130,157,248,130,202,208,247,173,247,130,141,0,128,169,32,141,24\)

\section*{PROCRAMS}

F915 IFTH 130． \(162,255,189,255,127,201,87,240,31,292,206,245,162,255,169,254\) G90 DATH \(126,201,87,249,32,202,296,246,162,249,189,253,129,291,37,246,33,202\) 3040 DATA \(157,254,126,169,87,157,255,128,76,155,3,169,22,15,20,75,143,3,169,32\) 995 DATH \(254,129,76,167,3\)
11001 DFTH162，20，172，174，129，189，154，129，157，155，129，202，208，247，140，155，129，96

\section*{Instructions}

FEAI＇r＇．
\begin{tabular}{|c|c|}
\hline 1 REM &  \\
\hline EREM & ＊FTFEETFI I THSTRUCTIONE＊＊＊ \\
\hline 3 FEH &  \\
\hline 4 REP &  \\
\hline 5 REM &  \\
\hline E REM & \\
\hline 7 REH & \\
\hline \＆FEM & \\
\hline 3 FEM & \\
\hline 10 ＇19：＝ &  \\
\hline 00 Fiot & CG TO 1 ：REALH：POKEI A A ： NE \\
\hline
\end{tabular}

100 FITFI＝ \(2 G\) TO 91 REALA POKEI A A：NE OT
116 G0T0950
 －1
21 CH AI＝＂保＂THEH SEO

－ 0

\(400 \mathrm{DATH} 162, \mathrm{~S}, 183,199,19,157,200,128,202,208,247,152,29\)

400 MATH \(129,202,204,24,150,108,189,241,120,157,249,128,232,224\)




S016 DATA＂EARTH IS DA ITE LABT LEG－NO RESOURCES＂
502 DATH＂OR SPRCES．THEH EEGRIN R FHENOMENAR：
5 SGU NHTA＂SPACE RESERRCH PROBHM EEGFN IN A IASST
E940 MATA＂DITCH ATTENFT TO SURUIVED．IT PROVED＂
5950 DATA＂FRUITFUL，＇IELDING THE EARTH－LIKE＂
5069 DRTA＂FLFANET ZOS IN THE OFUELLIAN MFJOK：
5070 DATF＂GFLAM＂．HOLEEEF，IT HÄS DFE DRAWBACK－
SOEG DATA＂THE NEARE＇T PLFHET PLANET OF HRDDN．＂
5Gge DhTA＂THE FRGOHITES RESENT THE HUMHN RHE＂
5104 INTA＂FOR INTFUDING FND FATROL YOUF PLANET．
5110 DHTA＂HGEONITEG HFIVE CDIWITTED HORRIBLE
5120 DATA＂HTROCITIES OH YOUR FEOFLE．NOW THEIF：
51 OMTH LERDEE ZHRGON HAS BUILT A STAREAEE＂

G169 THTA＂BEEN EXTERMTHGTET IN HN EFFGET DO＂
5170 DATA＂ATTACK HIS EFSE DNL SM EFFORT TO＂
5169 DATE＂RGO A MHOL F FLET WHE DECTROPED YOU＂
5190 DATA＂ARE OUF URET REOOFT TOU GUST FIFGT＂
520 IHFTH＂SULEED TO LIFT OFF IN AH UHFPTROLLED
5219 DFTA＂AREA RFTER TOU DESTMOTEI FRL FLEEEIRNE
5220 DATA＂IH SIOHT．AFTEF：TFKING DFF＇OU MIDHT＂
52 DATA＂BET CAUHHT IN A METEOF STORM
C4M DATR＂OFTEN OCCURS IN ZOIS REGION．FHVTIAE＇
25E DFTA＂DURINO THE JOURNE TYOU COMLI WELL＂
\(5 E E D\) DATA＂RUH IHTO EH ARGONITE FIGHTER NHILH＂
Si270 DATA＂YOU HAVE TO DESTROY＇IT EEFORE IT＂
S2SQ DHTA＂DESTROH＂ROU．FINFLL4 THEIR STAREHSE＂
5230 DATA＂IS WELL DEFENDED．GOOD LUCK＂
sge InTR＂＂． 1
5600 DRTA＂\(^{\prime \prime}\)
MAMOR GENERRL
510 DHTG＂MISSION－1＂
S．J MORFIE＂＊
5320 DATF＂＇VOUR FIM IS TO DESTROY GNY ATTACKING＂
5330 DATA＂FIREBIRL（S）．EUT WATCH OUT IFIRBIRDS＂
5340 DATA＂RRE DEADLY SINCE＇YOU CAN ONL＇\(Y\) DESTROY＂
535 D DATA＂IT E＇HITTIT \(\mathrm{SH}_{3}\) ITE SOFT STOMACH＂
5560 DFTA＂ 01 THE DONTFOL EOARD YOII：＂．＂
5570 DFTA＂PRESS 4 TO MOVE LEFT＂
5389 DFTA＂PRESS TO MOVE RIOHT＂
5330 IHTA＂PRESS F．TU FIRE＂：
54EO DATA＂MISSION－2
5416 DATA＂YOU MUST FNOID THE ASTEROIDS UHICH＂
S4EM TIMTR＂HPFEAR FROM THE TOF OF THE SCREEN
G44I IHIF＂T HEC IME
G4E THIF THUSCPFE QFTER THE GIRET FGTEROID RERCH
54E THTA A＂THE EOTTOM OF THE
\(54 E M\) DHT A＂THE BOTTOH OF THE SCREETA：＂
5480 DFIAH＂PRESE THAR TO MOUE UR．
5496 DHTATFRESS \({ }^{5}\) TG MUWE DOWN＂＊
5563 DHTA＂MISSIONH－3＂
5510 DRTA＂＇VOU MET AN RRGON FIOHTER WHICH WILL＂
5500 DATA＂ATTEMFT TO ZAF TOU SO YOU MUST ZAP＂
5530 DATA＂IT BEFORE IT SUCEED．HOUVEVER YOU MAY＂
5540 DATA＂ONL＇r＇FIRE WHEN＂YOUR EHERGY CLEFT ONE＂
5 SB DHTF＂IT EY HITTING ITE SOFT ETOMFCH＂
537 IRTA＂PFESE 4 TO MOVE LEFT＂
5BO DHTA＂FPESS＊TO IOVE RIGHT＂
Esen BRTA＂PRESS मे TU FIRE＂，＊
5460 DRTA＂サIESION－2
5410 AATH＂HOU MUST FVOID THE RSTEROIDS \(1 H I C H *\)
5429 DATH 2 HFFEAR FROH THE TOF OF THE SCREEN
5430 DATA ＂FHD MOUE LDLSER AND LDLWEF：FOR R SET＂
\(5440^{\circ}\) DATA＂TIAE TIME IS TISPLAY＇UNTEE THE LAND－＂
5450 DATA＂SCAFE AFTER THE FIRST ASTEROII FEACH＂
StEO DFTA＂THE EIOTTOM OF THE GCREEN）：
5.476 DHTH゙OH THE DON＇TROL EOPFR YUU
\(54 P\) DHTH＂PRESE O TO MOYE UP＂
54EQ．DHTA＂FEES A＇
55G日 DATA＂MISSION－
5516 DRTA＂MOU MET AN GFIGN FIGHTER WHICH WILL＂
5SEG DATA＂ATTEAFT TO \(\angle A F\) NOU SO TOD HOST ZAP

commodore COMPUTERS


ADVANCED WORD PROCESSING BUSINESS SYSTEM
DEVELOPMENT TRAINING SYSTEM ADVANCED BUSINESS SYSTEM（ 8000 SERIES）
ECONOMY BUSINESS SYSTEM（4000 SERIES）
PROFESSIONALIEDUCATIONAL SYSTEM


PERSONAL－ENTERTAINMENT EDUCATIONAL－SYSTEM
＊27K MEMORY EXPANSION BOARD FOR VIC 20 NOW AVAILABLE

COMMODORE hamoware AND SOFTWARE SPECIALST

W
TाIRRD U15IDT5

Contact：
MICHAEL LA ROBINA，
472 ANZAC PDE．
KINGSFORD，NSW 2032
（02）662－4063．

\section*{C＝commodore} MPUTER

VIC－20 SPECIALS

\section*{VIC－20 COMPUTER}
\(\$ 298.00\)
5K，COMPLETE WITH CASSETTE INTERFACE KIT

OR
GENUINE COMMODORE DATA CASSETTE FOR JUST \(\$ 69.00\)

EXPANSION FOR VIC
＊3K \＄45．00
＊8K \＄79．00
＊16K \＄119．00
DISK DRIVE \＄599．00 PRINTER \(\$ 469.00\)
PHONE FOR BEST DEAL IN AUSTRALIA （48 hour delivery）
DELIVERY FREE＂ALL STATES＂
SOFTWARE
100s OF TAPE PROGRAMS＠\(\$ 12.00\) ea CARTRIDGES－Complete ranges \(\$ 39.00\) each
NEW－FOOTT MATHS \(\$ 14.00\) VIC PAYROLL （99 EMPLOYEES） \(\$ 89.00\)
BOOKS ．－．BIG RANGE
VIC－REVEALED \(\$ 10.00\)
VIC MAGAZINES \(\$ 3.95\)
PHONE FOR FULL PRICE LIST
CBM ．．．PET
COMMODORE 4016 or 3016 －
32K UPGRADE－\(\$ 60.00\)
80 COLUMN UPGRADE－\(\$ 130.00\)
NEW 32K COMMODORE
12＇GREEN SCREEN \＄1195．00

COMMODORE＇64
NOW TAKING ORDERS FOR DELIVERY FEB＇83 \(\$ 998.00\)
RING NOW＊＊＊
BEST PRICE ON
EPSON PRINTERS
\＆MPI DRIVES
ATARI 400／800
GAMES TO CLEAR
SPACE INVADERS－ \(\mathbf{\$ 2 9 . 0 0}\) VIDEO CHESS－\＄29．00

\section*{DRTR PRRTS楽}

11 EDWARD STREET，SHEPPARTON TELEPHONE：（058） 21 7155， 210340

\section*{PROCRANS}
```

554G DHTH"DHLL'FIRE NHEN FOLUF: EHEFOGYCLEFT ONE
ESEG IHTA"IS FOF FMFOHHITE FIDHTER WHILE THE
5SSG IATA"FIGHT OHE IS MOUFODIS TEH."
SSE DHTH"OHN THE LONTFOL ETHFOT TDU
SESE UATA"PFESE Q TO HOVE UF"
55gg DATA"FRESS H}\mathrm{ TO MONE DO|N"
ESED DATA"FREES 4. TO FIFE",*
geg DHTA"MOUS MUST SHONT THFOUGH THE WELL "
SESLIIHTA"DEFENIEII STAREAGE FHII KILLL THEIR"
5640 LIATA"LEADER ZAFGON. SIHCE HO-OHE HAS GOT"
5ESE DATA"THAT FHR "FET, THEREFDRE THE INFORMMTIOH"
5600 DATHMMIOHNEE NROHO
5GEG DATH"FRESS 4" TO HOME NEF"
50.01 DATA"PREOE 4, TO NOUE LEFT"
SOGH DHTA"FRESS E TO MONE RIGHT"
5FIO DHTA" ":"", "SFECIMR CONMAMIL:
5%OD DATA"FFESS GT FN'T" HISSIONCESEFT LAST"
5%%G LIFTH") FOR LHEAT.".
F%40 DHTA"
S, STMEMOLS"
STS6 DATA", \#\#'.
......

```

```

 F% NATH
 5780 IATA"
 5%010 IHTA", OWO)
    ```

```

 EOGG GETEF:IF Et="" THEN ZOLG
 *a16 RETUKN
 GgME FFIHT":INAMTN"
    ```


```

 \mp@code{5eg RF(5)=" }
 256 HFS="
 956% RGCE)="
    ```


```

 59日 म5=" INETFUCTIOH FUF FIFEEIRN I ET H.FOK-E2"
 GENGORH=1 TORT
 *GEFFINT"smTMAN"
 G1日 FORE=1TOFSTEF
    ```


```

 TG40 NETTE
 965G SVGE2G
    ```



\section*{Atari Colour Selector}
by Derek Lees

The colour graphics on the Atari 400 ／help in doing just that．It allows you to 800 allow for a vast number of screen step through every possible combina－ combinations．In Atari Basic text mode 0,16 foreground colours，with eight possible luminosities can be combined with a similar selection of border colours．Added to those，eight text brightnesses can be chosen．

Some of these combinations are gaudy and unpleasant．Others are very pleasing．As there are so many，it is often laborious to select the combina－ tion which looks best．This program will tion using the space bar and escape key． As each combination changes，the SETCOLOR parameters and relevant addresses are displayed and can be ＇frozen＇for use in later programs．It runs straightforwardly in 4 k ．Underlined characters in this listing should be in inverse video．The vertical line is a shifted down－arrow and the curly bracket is escape－control－delete（clear screen in program mode）．

```

55*""1 5 UIOLET I3 'TELLOH-E
FEEA|"
E57", ? ELUEE LIS
T旦 " Cntl-Z, Cntl-R ; % times, Cntl-C

```

T5 ELGUE ELIHK
3日 FOGITION 1，1E：＂GE．1，日，＂FOEITIOH 14



 LIF：． \(12="\)
 W16

W1E

\(4 \times \mathrm{H} 16\)
110 GISIE IRFO
125 GET \＃1，CHCIICE
1.30 IF CHOICE \(=70\) THEH 150

135 IF CHOICE＝EE THEN 155
140 IF CHOLCE \(=34\) THEN 150
145 GTTO 125
150 GOSJE FIGNO：GOSUB ELIHK：GOTO 125
155 GOSUE BOF：GOSUE ELIHK：GOTO 125
L50 GOGUB TE KT：GOSIJR BLINK：GOTD 125
199 REM＊＊＊FOREGROUNEI COLOUF＊＊＊＊
2月0 POSITION 2，2日：？＂Hit SPAOE to altem
FOREGROMHLD［O1GuF＂
205 FOSITIOH 2，21：？＂Hit ESCAPE Key to f reeze far ameters
210 GET \＃1，k：IF \(k=32\) THEN \(\mathrm{CZ}=\mathrm{CZ}+1: \mathrm{GOTO} 2\) 25
215 IF \(K=27\) THEH POGITIDH \(21,20: 7\)＂the E FIGHTHESE＂：GOTO 240
220 B0TD 210
225 IF \(\mathrm{C} 2>15\) THEN \(\mathrm{O}=6\)
230 SETCOLOR 2．O2．L2：G0SUB INFO：GOTO 210
240 GET \＃1，K：IF K＝32 THEN L2＝L2＋2：G0TO 2 5.5

245 IF \(K=27\) THEN 270
250 GOTO 246
255 IF L2＞14 THEH L \(2=0\)
260 SETCOLOR 2，C2．L2：GOSUB 600：GOTO 240
27日 POSITION 2，20：？CHR＊（156）：POSITION 2 ，20：？CHP：15E ）
375 RETLIAN
290 REM＊＊＊BOROER COLOUR＊＊＊
309 POSITION \(4,20: 7\)＂Hit SPACE to alter
EORDER Colour
305 POSITION 4，21：？＂Hit ESCAPE to freez Eparameters
310 GET \＃1，K：IF K＝32 THEN C4＝C4＋1：GOTO 3 25
315 IF K＝THEN FOSITION 22．20：？＂BRIG HTTAESE＂：GOTO 346
\(32060 T 0310\)
325 IF C4＞15 THEN C4＝0
3．30 SETCOLOR 4，C4．L4：GOSUB INFO：GOTO 310 340 GET \＃1，K：IF K＝32 THEN L4＝L4＋2：GOTO 3 5
345 IF \(K=27\) THEN 3 T
359 GOTO 349
355 IF L4＞14 THEN L4
3EG SETCOLOR 4，C4，L4：GOSLIB INFO：GOTO 34G 370 POSITION \(4,20: ?\) CHR \({ }^{3}(156):\) POSITION 4 ，20：7 CHF\＄（156）
375 RETJFN
390 REM＊＊＊TEXT BRIIGHTNESS＊＊＊
40G POSITION 3， \(20: ?\)＂Hit SPACE to alter
TEXT br ightmes \({ }^{\prime \prime}\)
405 POSITION \(3.21:\) ？＂Hit ESCAPE to freez
eparamet．ets

\author{
＊NOW IMCLUDES SOFTWARE＊
}
＊WITH RETAIL VALUE＊
＊OF \＄2500＊

\section*{Printers}
＊C．ITOH
＊STAR
＊OLYMPIA

\section*{Strobe \\ plotters}

\section*{Hard disks}

\author{
NOW AVAILABLE！！
}

THE CYCOM CATALOGUE

NEARLY 400 PROGRAMS
FOR CP／M，APPLE，ATARI，
TRS－80，VIC AND IBM PC

PLUS HARDWARE，DISKS AND OTHER CONSUMABLES

\section*{EYEDTI}

COMPUTER SYSTEMS PTY．LTD．
178 HIGH STREET，WINDSOR VICTORIA 3181
TELEPHONE（03） 5293029

Model C800－S（Price \(\$ 4950+\mathrm{S} / \mathrm{TAX}\) ）

\section*{＂YOUR BUSINESS COMPUTER＂}
＊CP／M 2.2 ＊Z80A CPU 4 MHz
＊ 64 K byte ram＊ \(2 \times 1.25\) Mbyte \(8^{\prime \prime}\)
＊Serial port
＊VDU 8085 CPU
8275 CRT Floppies
＊Centronics printer port
controller \(\quad\)＊Option－S100
＊ \(24 \times 80\) chars
with full
\(-5,7,6\) or 11.6 Mbyte Hard disk available now
＊Business software＊Wordstar
＊Supercalc＊Cobol＊D8ASE II Distributed by：


512 Bridge Road，Richmond，Vic 3121 Phone：（03） 4295844

UHRT－IS ШНRT－IF
BUSINESS SYSTEMS

\title{
ENJOYABLE PROGRAMMING WITH HITACHI PEACH MB－6890
}

A new，exciting and continuing series of
Programmer＇s Reference Programs
BATCH 1 －BATCH 2 －BATCH 3
16 Programs each
are now available to HITACHI PEACH owners who are members of our fast－growing Australia－wide

\author{
HITACHI PEACH USERS＇CIRCLE
}

A Division of
WHAT－IS WHAT－IF BUSINESS SYSTEMS
Hitachi Peach Software Specialists
34 Lucerne Crescent，Frankston 3199

Send 27c stamp for more information

\section*{PROCRAWS}
```

410 GET \#1,K:IF K=32 THEN L1=L1+2:GOTO 4
25
41.5 IF k=27 THEN 440
429 GOTO 41G
425 IF L1>14 THEN LI=0
430 SETCOLOR 1,0,L1:GOSUB INFO:GOTO 41@
440 POSITION 4,20:? CHR\$(156):POSITION 4
,20:? CHF*(15E)
445 RETIJRN
590 REM ***DATA IJPDATE***
G00 POSITION G,N1G:?" ":POSITION G,N1E
? LI:POSITION 19,NL6:? " ":POSITION 15
,N16:? C2:POSITION 22,N16:? ""
E10 POSITION2?N16:? L2:POSITION 32,N16
:?" ":POSITION 32,N16:? C4:POSITION 35
.N15:?" ":POSITION 35,N16:? L4
615 POSITION 10,18:%" ":POSITION 10.1
S:? PEEK(70.9):POSITION 23,18:? " "OPOS
ITION 23,18:? PEEK(710)
620 POSITIDN 36.18:? " ":POSITION 36.1
8:? PEEK(712)
630 RETURN
690 REM ***BLINK INUERSE UIDEO***
700 POSITION 1.14:? "SELECT (T)ext,(F)OM
eground, or(B)order'
710 NORM=PEEKC755)
F15 FOR H=0 TD 5
T20 FIRR [OLA'r=0 TO 10:NEXT DELA'T
725 POKE 755,0:SOUNL 1,50,10,10
730 FOR DELH'T=O TD 1Q:NEXT DELH'Y
735 POKE 755,2: SOUN[1 1,0,0,0
74B HEKT H:POKE 755,NORM
745 FETUFH
P96 REM ***INTRODILTIDN***

```

```

305 H\$="D.JL COLOUR IJTILITY"
810 FOF J=01 TO 22:FOSITIOH J.|
515 ? 田:POKE 710.J*3:POKE P12,.J*4:50INMD
Q.d.10,10:FDR H=0⿴囗十, TO 5:NEXT H:NEXT \
820 SOIJND 日,0,日,0:RETIJRN

```


The＇state of the art＇in micro technology in the USA seems to be getting itself into more and more of a state．For instance，an ad spotted recently in an American micro mag boasts＇Now you can use computer tech－ nology to search the Bible on any subject．＇ You sce，some redneck fundamentalist com－ puter freaks have put the King James Bible onto disk and are supplying it with a piece of look－up software called（believe it or not）The Word processor．Going to the other extreme， an outfit calling itself＇The Softcore Software \(\mathrm{Co}^{\circ}\)＇is advertising a game（at least，we think it＇s a game）called＇Sewers of Moscow＇－with sound！．．．When 80 colu mn cards were advertised recently for \(\$ 130\) there would，one expects，be a spate of calls to the distributor （no address was supplied in the advertise－ ment）．Several nights after distribution of subscribers copies of that issue，APC＇s pub－ lisher was working late and received a call： ＂What？＂（our customary late－night greeting） ＂Is this Howard Productions？＂＂Yep＂＂Do you publish a magazine called Australian Personal Computer？＂＂Yes．＂＂1＇or the last couple of evenings l＇ve been getting dozens of calls from people wanting to know about a computer board that was advertised in your October issue and somehow my number was put in the ad．＂＂Oh dear ．．．＂＂But that＇ll probably stop because your November issue
should be out pretty soon．＂＂Well，actually this issue hasn＇t ．．er ．．hit the streets yet．＂ Words couldn＇t properly describe the sound emitted by this unfortunate gentleman at the thought of jumping up to night calls ad nauseam for the next few weeks．Our sincere apologies and a free tweive month subscrip－ tion to \(A P C\) sir，if you are reading this ．．．A report was dropped onto our desk not so long ago，the first item of which was a paragraph about computerised lavatory flushes of all things．Apparently one of Reckitt \＆Colman＇s R\＆D labs has（quote）＇an international selection of lavatories flushing 24 hours a day at the command of a computer＇．These flushes are performed by pneumatic controls which＇compress months of normal household use ．．．into weeks or even days＇．No suggestion is given as to why exactly there is a need to wear out all these cosmopolitan khazis，but it could be that Reckitt \＆Colman will produce a＇superlav＇down which micro industry rubbish might be forever flushed at the command of a Cray 1 ．．．For worried users of the VIC－20，we＇ve heard from the top that，despite rumours to the contrary，the VIC will not be dropped in the wake of the Commodore 64．So if anyone tells you that the ViC－－20 won＇t be on sale for much longer， you know what to do－tell them to VIC off．．．

Verbatim Datalife \({ }^{m \times 1}\) flexible disks now come in a bold, new storage box. But more important, they now come to you with a five year warranty: All of our Datalife disks feature seven data-shielding advances for greater disk durability, longer data life. To protect your data from head-to-disk abrasion. To shield your data against loss due to environmental conditions. To insure a longer lifetime of trouble-free data recording, storage and retrieval.

Every Datalife disk is extensively tested under the most extreme conditions. Critically-certified to be 100\%
error-free.Assuring you an added margin of performance, no matter what the operating conditions.

And we back it up with a five year warranty. Five times longer than the industry standard. Because Verbatim is the standard of excellence.


\section*{Min magmedia.}

Magnetic Media Services Pty Ltd 1 Lincoln Street,
Lane Cove 2066 NSW
Australia
Tel:(02) 4281100
Telex:AA22703

\section*{Themostexciing part of Verbatim's newlookis the longer warranty.}

\section*{Verbatim \\ \(\$ 1942\) Verbaim Corp Iramife 15 a mademark of berbanm Caras. - Sate Varbaum's warman suling for ricuals}

\section*{This Single Board..}


\section*{THE DISCOVERY MULTIPROCESSOR}

The dedicated power of this complete single board computer is provided to each user, making the DISCOVERY MULTIPROCESSOR unique among multi-user systems. With the power and expandability of distributed processing - With the economy of shared peripherals - With the flexibility of shared and private files - And all of this with full \(\mathrm{CP} / \mathrm{M}^{*}\) and \(\mathrm{S}-100\) compatibility.

\section*{Multiprocessing Solfware}

Our Distributed Processing Operating System, dpc/os \({ }^{\text {® }}\), resides in the Service Processor, establishing a CP/M environment for each user and managing access to the shared system resources. Multiuser facilities are provided for print spooling, for interprocessor communication and for private, public and shared-update files. Several processors can be employed concurrently by a single user via the enhanced batch submit facilities. And with DISCOVERY all CP/M compatible programs will execute without modification, thus protecting your software investment.

\section*{Multiprocessing Hardware} The ACE 64 K Distributed Processing Single Board Computer, the dpo-180" gives the DISCOVERY MULTIPROCESSOR its own unique architecture. One DPC is dedicated to each user providing exclusive use of the onboard \(\mathrm{Z}-80,64 \mathrm{~K}\) ram and serial \(1 / O\). Access to the shared resources is provided by an expanded DPC used as a Service Processor. Additional users can be added at any time by simply inserting additional DPC's, into the standard S-100 bus - up to a total of sixteen user processors in a single chassis! *CP/M is a registered TM of Digital Research, Inc.

IDSCOMTERY has been proven in installations throughout the World If you need the Power of Multiprocessing... it's time you discovered us!


The ACE DISCOVERY MULTIPROCESSOR dedicates a complete 64 K 2-80 Distributed Processing single board Computer, the dpo-180" to each user. An expanded DPC coordinates all' of the system activities.

Multiuser mainframes with 192 K ram start at under \(\$ 6600\) The 64 K dpo-180 \({ }^{\text {m }}\) is priced at \(\$ 1424\) Immediate delivery. A complete line of standard peripherals including a 33 M byte hard disk subsystem can be supplied on request. Dealer and OEM inquiries are invited.

\section*{archives computers (aust)}

HEAD OFFICE 163 Clarendon SI., Sth Melbourne, Vic 3205: Tel (03) 6998377 Telex ARCAUS AA39388 (Melb.)
SYDNEY OFFICE 59th Iloor MLC Centre, Martin PI. NSW, 2000. Tel 2351151 or 1141 Telex COHQ AA73114 (Sydney)```


[^0]: